Dr. Donald Halseth, Coordinator Department of Horticulture Cornell University Ithaca, New York 14853

2011 USPB/SFA Chip Variety Trials

Sponsored by The United States Potato Board & The Snack Food Association

Cooperators:

Mr. Brian Kirschenmann, Kirschenmann Farms, Inc., Bakersfield, CA
Mr. Doug Gergela, University of Florida, Hastings, FL
Dr. Jeff Stark, University of Idaho, Aberdeen, ID
Dr. Greg Porter, University of Maine, Orno, ME
Mr. Chris Long, Michigan State University, East Lansing, MI
Mr. Martin Glynn, USDA-ARS, East Grand Forks, MN
Mr. Xavier Peries, Black Gold Farms, Charleston, MO
Dr. Craig Yencho, North Carolina State University, Raleigh, NC
Dr. Phil Hamm, Oregon State University, Hermiston, OR
Dr. William Lamont, Pennsylvania State University, University Park, PA
Ms. Mary LeMere, University of Wisconsin, Hancock, WI

2011 USPB/SFA Chip Variety Trials

Dr. Donald E. Halseth - Coordinator Department of Horticulture Cornell University Ithaca, New York 14853

Introduction

The search for new and improved potato varieties is an ongoing and challenging task. The annual United States Potato Board (USPB) & Snack Food Association (SFA) Chip Variety Trials are designed to evaluate advanced and promising seedlings from the various US potato breeding programs. The eleven trial locations for the 2011 USPB-SFA chip variety trial research program were California, Florida, Idaho, Maine, Michigan, Missouri, North Carolina, North Dakota, Oregon, Pennsylvania, and Wisconsin. These sites provide a wide range of climates, soil types and cultural practices to help assess the strengths and weaknesses of new potato varieties. The typical growing season for chipping potatoes ranges from January through May for Southern locations, which provide out-of-field chip product, while Northern sites grow from May though September, with cold storage chipping of their production to begin in October and run through April or later.

Since the USPB-SFA chip trials began in 1985, there have been 90 advanced potato breeding lines and varieties (Table 4) evaluated and compared with potato chip industry standards. Thirty-five of these lines have been named and released and twenty-five are in national commercial seed production. The most recently released varieties are Beacon Chipper, Dakota Crisp, Dakota Diamond, Lamoka, and Megachip, Nicolet, Tundra and Waneta - with a total of 1,232 acres of US seed in 2011. These new varieties offer the chipping industry higher yield potential, longer storage life and more consistent chip quality.

The goal for the USPB-SFA chip trials is to identify superior new potato lines which will be well adapted for their production area and utilization market. The potato characteristics that the chip industry is looking for are high, stable yield, disease and pest resistance, stress tolerance, specific gravity (high dry matter), bright potato chip color, potatoes free from defects, and long-term cold storage capabilities. For Southern production an earlier variety to replace Atlantic is needed which does not have internal heat necrosis or soft rot problems. Northern production would benefit from advanced selections that offer the potential of providing acceptable chip quality from long-term cold storage temperatures below 50°F and does not have susceptibility to scab and other organisms.

Note: advanced storage studies with multiple temperatures and sample dates are being conducted on the 2011 test crop in ID, ME, MI, ND and WI and will be reported in a

separate report in May of 2012 once all the long-term storage experiments have been concluded.

2011 USPB-SFA Trials

Seventeen entries for the 2011 USPB-SFA chip trials and their source are listed below: All chip trial coordinators also have both Atlantic (for yield and specific gravity) and Snowden (for cold temperature storage chipping) as check varieties in their trials.

The following 10 entries were tested by USPB-SFA trial coordinators in all eleven states:
CO00188-4W Colorado State University – David Holm
CO00197-3W Colorado State University – David Holm
MSL292-A Michigan State University – David Douches
ND7519-1 North Dakota State University – Susie Thompson
ND8305-1 North Dakota State University – Susie Thompson
ND8331Cb-2 North Dakota State University – Susie Thompson
NY140 Cornell University – Walter DeJong
W2310-3 University of Wisconsin – Felix Navarro
W2978-3 University of Wisconsin – Felix Navarro
W4980-1 University of Wisconsin – Felix Navarro

The following three entries were only sent to the seven northern trials (ID, ME, MI, ND, OR, PA, WI):

MSJ126-9Y Michigan State University – David Douches

MSR061-1 Michigan State University – David Douches

W5015-12 University of Wisconsin – Felix Navarro

The following one entry was only sent to four northern trials (ID, OR, PA, WI): MN99380-1Y University of Minnesota – Christian Thill

The following one entry was only sent to three northern trials (ME, MI, OR): NY148 (formerly line E106-4) Cornell University – Walter DeJong

The following two entries were only sent to the four southern trials (CA, FL, MO, NC): AF0338-17 University of Maine – Greg Porter MSQ086-3 Michigan State University – David Douches

The 2011 USPB-SFA trials provided a wealth of evaluations on field performance of ten potato breeding lines over all eleven state locations, three in seven northern states, one each in three and four states, and two in four southern states. The performance of our chipping industry varieties Atlantic and Snowden were confirmed as important standards. Both varieties had total and marketable yields at or near the top in all 11 state trials. Atlantic had the second highest specific gravity on average, with the highest or second highest dry matter in 6 out of the 11 trials. NY140 had the highest total yield in two

southern and three northern trials, averaging 463 cwt/acre over all 11 states. NY140 had the highest or second highest marketable yield in 5 states, averaging 318 cwt/acre over all 11 state trials. Other entries with good marketable yield were MSL292-A (11 state average of 294 cwt/acre), MSR061-1 (7 northern state average of 324 cwt/acre), NY148 (3 northern state average of 485 cwt/acre), and W4980-1 (11 state average of 271 cwt/acre). Specific gravity in the 4 southern states was highest for Atlantic, ND7519-1, ND8305-1 and W2310-3, while CO00188-4W and W2978-3 were the lowest. In the 7 northern trials Atlantic and ND8305-1 had the highest specific gravity while CO00188-4W and W2978-3 were the lowest. Out-of-field chip scores in the four southern trials were generally very good. All 12 entries in the FL trial had chip color better than Atlantic, with W2978-3 the best. All entries in the NC trial were as good or better than Atlantic, with ND8305-1 having the best color. Eight entries had significantly fewer chip defects than Atlantic in the MO trial, while three were equal to Atlantic and one had a very high percentage of defects. W2310-3 had the lowest percent (only 4.4%), while ND8331Cb-2 had the highest (93.2%).

Attached are three summary tables which provide data on all 17 entries (plus the standards Atlantic and Snowden) tested in the USPB-SFA field trials in 2011. Table 1 provides total yield (cwt/acre), Table 2 provides marketable yield (cwt/acre), and Table 3 provides specific gravity. Note that not all lines are in every state trial. The Chip Committee has determined that if breeder data exists to make a good estimate of a clone's range of adaptation, entries may be placed in only southern or northern trials.

TABLE 1.	201	1 US	SPB-	SFA	CHIP)	TRIA	LS	- тс	TAL	YIE	LD (cwt/a	acre)
		SO	UTHEF	RN TRIA	ALS				NORTI	HERN	FRIALS			
ENTRIES / STA	TES	СА	FL	мо	NC		ID	ME	МІ	ND	OR	PA	WI	average
ATLANTIC	all	345	407	216	245		452	314	483	220	1265	125	530	418
SNOWDEN	all	232	357	201	237		447	291	418	391	1047	357	591	415
AF0338-17	4S	208	381	243	240		na	na	na	na	na	na	na	268
CO00188-4W	all	228	297	159	237		345	300	367	152	566	140	383	289
CO00197-3W	all	243	402	235	232		326	253	271	168	752	273	437	327
MN99380-1Y	4N	na	na	na	na		375	-	-	-	941	353	701	593
MSJ126-9Y	7N	na	na	na	na		364	303	265	261	729	105	333	337
MSL292-A	all	195	378	224	236		426	344	340	317	849	288	583	380
MSQ086-3	4S	309	451	203	219		na	na	na	na	na	na	na	296
MSR061-1	7N	na	na	na	na		393	273	298	357	859	271	439	413
ND7519-1	all	198	406	169	161		278	272	316	178	788	214	471	314
ND8305-1	all	307	345	161	118		245	208	277	208	763	239	456	302
ND8331Cb-2	all	162	243	120	62		272	271	351	339	725	83	581	292
NY140	all	189	477	279	236		508	376	571	346	1307	253	552	463
NY148 (E106-4)	3N	na	na	na	na		-	379	434	-	1054	-	-	622
W2310-3	all	340	301	182	210		350	272	411	114	817	251	502	341
W2978-3	all	250	423	176	183		386	328	361	323	736	128	483	343
W4980-1	all	245	437	209	275		338	334	342	114	723	254	449	338
W5015-12	7N	na	na	na	na		383	340	444	229	1005	364	181	421
average		247	379	198	207		368	304	372	248	878	231	480	355

TABLE 2.	201	1 US	SPB-	SFA	CHIF)	TRIA	LS	- MA	RKE	ΕΤ ΥΙ	ELD	(cw	vt/acre)
									NODT					
		50	UIHER	KN IRIA	ALS				NORT	IERN	RIALS			
ENTRIES / STA	TES	CA	FL	MO	NC		ID	ME	МІ	ND	OR	PA	WI	average
ATLANTIC	all	298	303	134	182		371	268	415	131	804	100	494	318
SNOWDEN	all	197	307	170	147		307	243	342	239	776	301	567	327
AF0338-17	4S	189	291	150	172		na	na	na	na	na	na	na	201
CO00188-4W	all	213	138	93	140		162	240	252	99	444	105	338	202
CO00197-3W	all	206	228	152	133		169	173	157	95	528	138	390	215
MN99380-1Y	4N	na	na	na	na		197	I	-	-	712	175	582	417
MSJ126-9Y	7N	na	na	na	na		261	279	205	147	563	83	321	266
MSL292-A	all	162	275	170	147		279	297	291	187	639	251	531	294
MSQ086-3	4S	285	260	103	105		na	na	na	na	na	na	na	188
MSR061-1	7N	na	na	na	na		306	223	202	195	688	228	426	324
ND7519-1	all	166	296	125	72		169	202	240	109	559	135	441	229
ND8305-1	all	240	233	120	39		74	87	177	104	561	92	419	195
ND8331Cb-2	all	109	113	53	7		147	190	212	214	512	45	545	195
NY140	all	157	327	229	184		351	326	491	200	518	196	516	318
NY148 (E106-4)	3N	na	na	na	na		-	303	345	-	806	-	-	485
W2310-3	all	317	239	150	135		245	229	357	74	676	139	465	275
W2978-3	all	228	336	113	112		245	233	216	168	552	97	450	250
W4980-1	all	207	356	159	190		270	290	242	67	560	217	419	271
W5015-12	7N	na	na	na	na		205	281	318	115	822	194	148	298
average		212	264	137	126		235	242	279	143	631	156	441	261

TABLE 3.	201	1 US	SPB-	SFA	CHIF)	TRIA	LS	- SP	ECIF	FIC G	RAV	ΊΤΥ	
		SO	UTHER	RN TRIA	ALS			ĺ	NORTH	IERN 1	FRIALS			
ENTRIES / STA	TES	CA	FL	МО	NC		ID	ME	МІ	ND	OR	РА	wi	average
ATLANTIC	all	1.103	1.080	1.080	1.087		1.097	1.085	1.087	1.093	1.087	1.086	1.089	1.089
SNOWDEN	all	1.090	1.076	1.064	1.094		1.093	1.085	1.075	1.096	1.079	1.075	1.081	1.083
AF0338-17	4S	1.097	1.079	1.064	1.088		na	na	na	na	na	na	na	1.082
CO00188-4W	all	1.102	1.071	1.067	1.074		1.090	1.079	1.068	1.086	1.071	1.068	1.068	1.077
CO00197-3W	all	1.094	1.079	1.060	1.081		1.090	1.081	1.071	1.089	1.072	1.070	1.076	1.078
MN99380-1Y	4N	na	na	na	na		1.082	-	-	-	1.074	1.070	1.074	1.075
MSJ126-9Y	7N	na	na	na	na		1.088	1.079	1.068	1.075	1.073	1.065	1.075	1.075
MSL292-A	all	1.095	1.075	1.070	1.086		1.086	1.082	1.074	1.075	1.077	1.071	1.080	1.079
MSQ086-3	4S	1.094	1.075	1.064	1.081		na	na	na	na	na	na	na	1.079
MSR061-1	7N	na	na	na	na		1.089	1.081	1.078	1.089	1.079	1.071	1.073	1.080
ND7519-1	all	1.104	1.080	1.070	1.094		1.090	1.091	1.078	1.088	1.078	1.072	1.086	1.085
ND8305-1	all	1.109	1.089	1.069	1.092		1.099	1.089	1.085	1.097	1.089	1.088	1.083	1.090
ND8331Cb-2	all	1.114	1.079	1.079	1.087		1.101	1.089	1.081	1.084	1.085	1.081	1.082	1.087
NY140	all	1.107	1.074	1.068	1.083		1.082	1.082	1.079	1.083	1.072	1.064	1.086	1.080
NY148 (E106-4)	3N	na	na	na	na		-	1.087	1.087	-	1.074	-	-	1.083
W2310-3	all	1.099	1.089	1.076	1.099		1.099	1.087	1.083	1.091	1.074	1.084	1.085	1.088
W2978-3	all	1.098	1.072	1.057	1.075		1.081	1.082	1.065	1.084	1.068	1.064	1.068	1.074
W4980-1	all	1.094	1.074	1.056	1.082		1.090	1.083	1.073	1.103	1.073	1.069	1.074	1.079
W5015-12	7N	na	na	na	na		1.090	1.085	1.085	1.076	1.084	1.076	1.081	1.082
average		1.100	1.078	1.067	1.086		1.090	1.084	1.077	1.087	1.077	1.073	1.079	1.082

Atlantic, 1985-2011 and Snowden, 1988-2011 as Standards

WNC672-2, 1985-1987 WNC521-12, 1985-1986 W879, 1985-1986 W833, 1985 TXA17-1, 1985-1986 A70369-2, 1985-1986 ND860-2, 1985-1986 G670-11, 1985 BR7093-24 (Gemchip), 1986-1988 W848 (Niska), 1986-1987 NY71 (Kanona), 1986-1988 NY81 (Steuben), 1986-1988 NY72 (Allegany), 1987-1989 AF236-1 (Somerset), 1987-1989 MS700-70, 1987-1989 AC80545-1 (Chipeta), 1987-1989 LA01-38 (LaBelle), 1988-1990 MS716-15, 1988-1990 MS700-83 (Spartan Pearl), 1988-1990 W855 (Snowden), 1988-1990 **Saginaw Gold**, 1988-1990 AF875-16 (Mainechip), 1989-1991 D195-24, 1989 ND2008-2, 1990 Coastal Chip, 1990 CS7232-4, 1990-1992 Andover, 1991-1993 **Pike**, 1991-1993 NY87 (**Reba**), 1991 W887, 1991-1993

W870, 1991-1993 A80559-2, 1991-1993 NDA2031-2, 1992-1994 **Suncrisp**, 1992-1994 B0178-34, 1992-1994 NDO1496-1 (Ivory Crisp), 1993-1995 NY95, 1993 AF875-15, 1994-1996 ND2417-6 (NorValley), 1994-1996 ND2471-8, 1994-1996 NY102 (Monticello), 1994-1995 NY103 (**Eva**), 1995-1997 BCO894-2, 1995-1997 ATX85404-8, 1996-1998 AF1433-4, 1996-1998 ND2676-10 (**Dakota Pearl**), 1997-1999 B0564-8 (Harley Blackwell), 1997-1999 B0564-9, 1997-1999 NY115, 1997-1999 W1313, 1999 NY112 (Marcy), 1998-2000 AF1668-60, 1998-2000 MSNT-1, 1998-2000 MSA091-1 (Liberator), 1999-2001 B0766-3, 2000-2002 AF1775-2, 2000-2002 W1431, 2000-2002 NY120, 2000-2002 AF1424-7, 2001-2003 MSG227-2, 2001-2003

W1355-1 (White Pearl), 2001-2003 NDTX4930-5W, 2001-2003 ND2470-27 (**Dakota Crisp**), 1999, 2003-2004 A91790-13, 2002-2004 MSF099-3, 2002-2004 B1240-1, 2004 W1773-7, 2004 ND5822C-7 (Dakota Diamond), 2003-2005 W1201 (Megachip), 2003-2005 AF2211-9, 2004-2006 MSJ461-1, 2004-2006 NY132, 2004-2006 MSJ316-A, 2005-2007 W2133-1 (Nicolet), 2005-2007 **Beacon Chipper**, 2006-2008 CO95051-7W, 2006-2008 MSJ147-1, 2006-2008 W2324-1 (Accumulator), 2006-2008 (2009 4S) CO96141-4W, 2007-2009 MSJ036-A (Kalkaska), 2008-2009 AF2291-10, 2008-2010 CO97043-14W. 2008-2010 CO97065-7W, 2008-2010 NY138 (Waneta), 2008-2010 NY139 (Lamoka), 2008-2010 W2717-5 (Lelah), 2008-2010 MSJ126-9Y (McBride), 2009-2011 W2310-3 (Tundra), 2008,2010-2011 ND8331Cb-2, 2011

CALIFORNIA USPB-SFA CHIP TRIAL - 2011

NAME	TOTAL	MARKT	UNDER < 1 7/8"	MED	OVER > 4"	# TUBERS	SOLIDS	SPECIFIC GRAVITY
	cwt/acre	cwt/acre	cwt/acre	cwt/acre	cwt/acre			
ATLANTIC	345	298	48	298	0	230.7	20.9	1.103
SNOWDEN	232	197	35	197	0	156.0	18.6	1.090
AF0338-17	208	189	19	189	0	125.3	19.7	1.097
CO00188-4W	228	214	14	214	0	116.0	20.7	1.102
CO00197-3W	243	206	37	206	0	167.7	19.3	1.094
MSL292-A	195	162	33	162	0	136.3	19.4	1.095
MSQ086-3	309	285	24	285	0	169.7	19.2	1.094
ND7519-1	198	166	33	166	0	126.3	21.0	1.104
ND8305-1	307	240	67	240	0	209.7	21.9	1.109
ND8331CB-2	162	109	53	109	0	147.3	22.8	1.114
NY140	189	157	33	157	0	126.3	21.6	1.107
W2310-3	340	317	23	317	0	165.3	20.2	1.099
N2978-3	250	228	22	228	0	150.3	19.9	1.098
W4980-1	245	207	38	207	0	175.7	19.3	1.094
average-	246.6	212.4	34.2	212.4	0.0	157.3	20.3	1.100

1

Kirschenmann Farms, Inc., Bakersfield, CA

FLORIDA REGIONAL TRIAL

Local Coordinators:	Cooperating Grower:	Cooperating Chip Processor:
Mr. Doug Gergela Research Coordinator University of Florida/IFAS Hastings Demonstration Unit Hastings, FL 32145-0728	University of Florida/IFAS Hastings Demonstration Unit, Hastings, FL	Utz Quality Foods Inc. Hanover, PA
Dr. Lincoln Zotarelli Assistant Professor University of Florida/IFAS Horticultural Sciences Department Gainesville, FL 32611		
Trial Data:		
Planting Site:	University of Florida/IFAS, Hastings Demonst Hastings, FL	ration Unit Research Farm,
Planting Date:	February 1, 2011	
Harvest Date:	May 16, 2011 (105 days)	
Growing Conditions:	Overall, weather conditions in the region for the rated as good to fair. There were no freezing of forward. February and March had temperature however April and May were hotter and driver average to fair for most clones, but marketable some clones, as the tubers did not bulk due to stress. Entry ND8331cb-2 was extremely late reason that yields were very low for this clones	he 2011 growing season were events from the planting date res and rainfall near normal, than normal. Total yields were e yields were considered low for o the late season weather related to emerge, which is the primary
Experimental Design:	Each variety/clone was planted in a single 250 protocol. Four 20 ft sections of each row were was not a randomized and replicated experim calculated.	0 ft row as directed by the SFA e harvested and graded. This ent. Only means were
Row Spacing:	Machine planted. Approx. 8 inches in-row, 40) inches between-rows.
Fertilizer:	pre-plant: 50-100-150/A; side-dress: 1 applica application of 75-0-0/A (N-P-K per Acre)	ntion of 75-0-125/A and 1
Pest Control:	Pic-Clor 60, 11 Gallons/A, pre-plant Temik 15G, 20 lb/A, and Amistar, 3.25 oz/A in Boundary 1.5 pt/A at hilling for weed control Fungicides and Insecticides as needed. IPM p	n furrow at planting program used.
Chip Ratings:	Chips were prepared and rated following the p in the Snack Food Association Chipping Pota Chips were prepared and fried by Utz Quality Chip scores are presented in Table 2.	procedures outlined to Handbook (1995). Foods.

Table 1. Produ	ction stat	istics for	SFA clor	nes.								
	٦	uber Yi	əld		Size Class Distribution ^{3, 4} (%)				Size Rang	Class e ⁴ (%)		
	No.1 ¹	Total	%	%								Specific
Clone	cwt/A	cwt/A	No.1 ²	Culls	1	2	3	4	5	2 to 4	3 to 4	Gravity
Atlantic	303	407	80	7	17	46	19	15	0	80	34	1.080
Snowden	307	357	93	7	6	58	20	14	0	93	34	1.076
AF0338-17	291	381	83	9	15	72	11	0	0	83	11	1.079
CO00188-4W	138	297	57	18	34	57	0	0	0	57	0	1.071
CO00197-3W	228	402	63	10	31	60	2	0	0	63	2	1.079
MSL292-A	275	378	77	6	20	56	15	6	0	77	21	1.075
MSQ086-3	260	451	62	9	28	59	3	0	0	62	4	1.075
NY140	327	477	73	6	22	64	9	1	0	73	9	1.074
ND7519-1	296	406	80	9	16	65	13	2	0	80	15	1.080
ND8305-1	233	345	70	4	27	69	1	0	0	70	1	1.089
ND8331cb-2	113	243	49	4	43	49	0	0	0	49	0	1.079
W2310-3	239	301	84	6	14	79	5	0	0	84	5	1.089
W2978-3	336	423	82	3	13	68	10	4	0	82	14	1.072
W4980-1	356	437	91	10	8	66	21	3	0	91	24	1.074
Average	264	379										

¹No.1 Yield: marketable yield, size classes 2 to 4

 $^{2}\text{Percent}$ No. 1: calculated based on weight using the formula, No. 1 Wt $\,$ / Total Yield Wt

³Size Class Distribution: calculated based on weight using the formula, Class Wt / (Total Yield Wt – Cull Wt).

⁴Size Classes: 1 = 1.5 to 1.7/8", 2 = 1.7/8 to 2.5", 3 = 2.5 to 3.25", 4 = 3.25 to 4", 5 = > 4"; Class size C (<1.5") was recorded and is included in Total Yield but is not shown as a separate size category.

Table 2. Plant growth and tuber characteristics for SFA clones.

Plant Growth Characteristics ¹ Tuber Characteristics ² Percent Early Vine Vine Chip Clone Stand Vigor Type Maturity IFC SC ST TS ED APP Rating Atlantic 83 na 9 3 2 6 5 3 5 7 59.4 Snowden 72 na 8 4.5 2 6 5 3 4 7 60.3 AF0338-17 82 na 8-5 5.5 1 6 5 3 4 7 60.8 CO00188-4W 73 na 8-5 1 1 7 5 3 5 6 59.6 CO00197-3W 83 na 8-5 1 2 7 6 4 5 5 61.2 MSL292-A 89 na 8 4.5 1 6 5 3 5												
Percent Early Vine Vine Chip Clone Stand Vigor Type Maturity IFC SC ST TS ED APP Rating Atlantic 83 na 9 3 2 6 5 3 5 7 59.4 Snowden 72 na 8 4.5 2 6 5 3 4 7 60.3 AF0338-17 82 na 8-5 5.5 1 6 5 3 4 7 60.8 CO00188-4W 73 na 8-5 1 1 7 5 3 5 6 59.6 CO00197-3W 83 na 8-5 1 2 7 6 4 5 5 61.2 MSL292-A 89 na 8 4.5 1 6 5 3 5 6 59.4		Plant	Growth	Characte	eristics ¹	_		Tuber	Characte	eristics ²		
CloneStandVigorTypeMaturityIFCSCSTTSEDAPPRatingAtlantic83na9326535759.4Snowden72na84.526534760.3AF0338-1782na8-55.516534760.8CO00188-4W73na8-5117535659.6CO00197-3W83na8-5127645561.2MSL292-A89na84.516535659.4MSQ086-387na7.45.517535661.9		Percent	Early	Vine	Vine							Chip
Atlantic 83 na 9 3 2 6 5 3 5 7 59.4 Snowden 72 na 8 4.5 2 6 5 3 4 7 60.3 AF0338-17 82 na 8-5 5.5 1 6 5 3 4 7 60.8 CO00188-4W 73 na 8-5 1 1 7 5 3 5 6 59.6 CO00197-3W 83 na 8-5 1 2 7 6 4 5 5 61.2 MSL292-A 89 na 8 4.5 1 6 5 3 5 6 59.4 MSQ086-3 87 na 7-4 5.5 1 7 5 3 5 6 61.9	Clone	Stand	Vigor	Туре	Maturity	IFC	SC	ST	ΤS	ED	APP	Rating ³
Attaine Bos Ina Bos Ina Bos Ina Bos Ina Bos Ina Bos Ina <	Atlantic	83	na	Q	З	2	6	5	З	5	7	59.4
AF0338-17 82 na 8-5 5.5 1 6 5 3 4 7 60.3 AF0338-17 82 na 8-5 5.5 1 6 5 3 4 7 60.8 CO00188-4W 73 na 8-5 1 1 7 5 3 5 6 59.6 CO00197-3W 83 na 8-5 1 2 7 6 4 5 5 61.2 MSL292-A 89 na 8 4.5 1 6 5 3 5 6 59.4 MSQ086-3 87 na 7-4 5.5 1 7 5 3 5 6 61.9	Snowdon	72	na	0	4.5	2	6	5	2	1	7	60 2
AF0338-17 82 na 8-5 5.5 1 6 5 3 4 7 60.8 CO00188-4W 73 na 8-5 1 1 7 5 3 5 6 59.6 CO00197-3W 83 na 8-5 1 2 7 6 4 5 5 61.2 MSL292-A 89 na 8 4.5 1 6 5 3 5 6 59.4 MSQ086-3 87 na 7-4 5.5 1 7 5 3 5 6 61.9	Showden	12	na	0	4.5	Z	0	5	3	4	1	00.5
CO00188-4W 73 na 8-5 1 1 7 5 3 5 6 59.6 CO00197-3W 83 na 8-5 1 2 7 6 4 5 5 61.2 MSL292-A 89 na 8 4.5 1 6 5 3 5 6 59.4 MSQ086-3 87 na 7-4 5.5 1 7 5 3 5 6 61.9	AF0338-17	82	na	8-5	5.5	1	6	5	3	4	7	60.8
CO00197-3W 83 na 8-5 1 2 7 6 4 5 5 61.2 MSL292-A 89 na 8 4.5 1 6 5 3 5 6 59.4 MSQ086-3 87 na 7.4 5.5 1 7 5 3 5 6 61.9	CO00188-4W	73	na	8-5	1	1	7	5	3	5	6	59.6
MSL292-A 89 na 8 4.5 1 6 5 3 5 6 59.4 MSQ086-3 87 na 7-4 5.5 1 7 5 3 5 6 61.9	CO00197-3W	83	na	8-5	1	2	7	6	4	5	5	61.2
MSQ086-3 87 na 7-4 55 1 7 5 3 5 6 619	MSL292-A	89	na	8	4.5	1	6	5	3	5	6	59.4
	MSQ086-3	87	na	7-4	5.5	1	7	5	3	5	6	61.9
NY140 90 na 9-6 3.5 1 7 6 3 5 7 61.3	NY140	90	na	9-6	3.5	1	7	6	3	5	7	61.3
ND7519-1 78 na 8 2.5 1 6 6 4 6 7 62.0	ND7519-1	78	na	8	2.5	1	6	6	4	6	7	62.0
ND8305-1 57 na 8 7 2 7 6 4 3 5 61.2	ND8305-1	57	na	8	7	2	7	6	4	3	5	61.2
ND8331cb-2 na na na 8 1 6 5 3 3 5 60.8	ND8331cb-2	na	na	na	8	1	6	5	3	3	5	60.8
W2310-3 76 na 9 4.5 2 6 5 4 6 6 61.8	W2310-3	76	na	9	4.5	2	6	5	4	6	6	61.8
W2978-3 67 na 8-7 5 2 7 6 4 5 7 62.8	W2978-3	67	na	8-7	5	2	7	6	4	5	7	62.8
W4980-1 76 na 9-6 3.5 2 6 5 3 3 7 60.1	W4980-1	76	na	9-6	3.5	2	6	5	3	3	7	60.1

¹Plant Growth Characteristics.

Percent Stand: based on machine planted 8 inch in-row spacing, 20 ft plot.

Early Vigor: 1 = no emergence, 2 = leaves in rosette, 3 = plants < 2 in., 4 = plants 2 to 4 in., 5 = plants 4 to 6 in., 6 = plants 6 to 8 in., 7 = plants 8 to 10 in., 8 = plants 10 to 12 in., 9 = plants > 12 inches.

Vine Type: 1 = decumbent - poor canopy, 2 = decumbent - fair canopy, 3 = decumbent - good canopy, 4 = spreading - poor canopy, 5 = spreading - fair canopy, 6 = spreading - good canopy, 7 = upright - poor canopy, 8 = upright - fair canopy, 9 = upright - good canopy.

Vine Maturity: 1 = completely dead, 3 = yellow and dying, 5 = moderately senesced, 7 = starting to senesce, 9 = green and vigorous.

²Tuber Characteristics.

Internal Flesh Color (IFC): 1 = white, 2 = cream, 3 = light yellow, 4 = medium yellow, 5 = dark yellow, 6 = pink, 7 = red, 8 = blue, 9 = purple.

Skin Color (SC): 1 = purple, 2 = red, 3 = pink, 4 = dark brown, 5 = brown, 6 = tan, 7 = buff, 8 = white, 9 = cream.

Skin Texture (ST): 1 = partially russet, 2 = heavy russet, 3 = moderate russet, 4 = light russet, 5 = netted, 6 = slightly netted, 7 = moderately smooth, 8 = smooth, 9 = very smooth.

Eye Depth (ED): 1 = very deep, 3 = deep, 5 = intermediate,7 = shallow, 9 = very shallow

Overall Appearance (APP): 1 = very poor, 3 = poor, 5 = fair, 7 = good, 9 = excellent.

³Chip Rating: Chips were prepared and rated following the procedures outlined in the Snack Food Association Chipping Potato Handbook (1995). A sub-sample of potatoes from the trial was shipped to Utz Quality Snacks, chipped and scored according to the Hunter Lab rating.

Table 3. External and internal defects for SFA clones.

		% Exter	nal Tuber I	Defects ¹			%	Internal T	uber Defec	ts ²
	Growth	Mis-	Sun-	Rotten	Total	-				
Clone	Cracks	shapen	burned	& misc.	Culls	_	НН	BR	CRS	IHN
Atlantic	1	0	4	2	7		6	0	0	5
Snowden	0	0	3	3	7		1	0	0	0
AF0338-17	2	0	4	3	9		1	0	0	3
CO00188-4W	2	2	9	5	18		0	0	0	0
CO00197-3W	0	1	5	3	10		0	0	0	0
MSL292-A	0	0	3	3	6		0	0	0	0
MSQ086-3	3	1	3	2	9		0	0	0	0
NY140	0	0	4	1	6		1	0	3	0
ND7519-1	1	2	5	2	9		0	0	1	0
ND8305-1	0	0	2	2	4		0	0	3	0
ND8331cb-2	0	2	2	1	4		0	0	0	0
W2310-3	0	1	4	1	6		0	0	0	0
W2978-3	0	1	1	1	3		0	0	0	0
W4980-1	1	0	9	0	10		0	0	0	51

¹External Tuber Defects: Total Culls is sum of growth cracks, misshapen, sunburned and rotten/miscellaneous.

²**Percent Internal Tuber Defects**: percent of tubers showing defects; HH = hollow heart, BR = brown rot, CRS = corky ringspot, IHN = internal heat necrosis.

2011 Idaho Snack Food Trial

Local Coordinator:

Jeff Stark Peggy Bain Melvin Chappell University of Idaho Aberdeen R&E Center Aberdeen, Idaho

Trial Data		
PLANTED	4-May-11	
VINE KILLED	6-Sep-11	
	Mechanical	
HARVESTED	29-Sep-11	
PLOT LENGTH	18' HARVEST LENGTH	18'
HILL SPACING	10" ROW SPACING	36"
HILLS PER PLOT	20 ROWS/ PLOT	1
REPS	4	

METHOD OF HARVEST Grimme Machine

FERTILIZER

120 N - 160 P -15 0 K - 50S - 8 lb zinc- pre-plant 120 units injected through water

INSECTICIDES APPLIED/HILLING

Admire Pro (8 oz/A) - Shanked May 24 **FUNGICIDES APPLIED** Echo 1.5 pints/acre July 14 & 24 **HERBICIDES APPLIED** Metri 47(12oz/A) & Matrix (1.5oz/A) +Eptam 6.5 pints/acre Metribuzin, Rimsulfuron - 5ethyl dipropylthiocarbamate Spray Coupe- June 7 **ENVIRONMENTAL FACTORS**

Cool June, Summer not as hot of temperatures as some years

Table 1. IDAHO 1	able 1. IDAHO TRIAL 2011, Yield, Size Distribution, Specific Gravity										
	Yield (c	:wt/A)	Perc	ent Size	e Distribu	ition	%	Specific			
Clone	US No1	Total	<1 ^{7/8} "	1 ^{7/8} -2.5"	2.5-4"	>4"	Unusable	Gravity			
ATLANTIC	371	452	12	17	50	15	6	1.097			
NY140	351	508	15	18	42	9	16	1.082			
SNOWDEN	307	447	30	31	34	4	2	1.093			
MSR061-1	306	393	21	23	50	4	1	1.089			
MSL292-A	279	426	32	31	32	3	3	1.086			
W4980-1	270	338	19	30	46	4	1	1.090			
MSJ126-9Y	261	364	15	23	44	4	13	1.088			
W2978-3	245	386	35	31	31	2	2	1.081			
W2310-3	245	350	24	32	37	1	6	1.099			
W5015-12	205	383	46	34	19	0	0	1.090			
MN99380-1	197	375	45	35	16	2	2	1.082			
CO00197-3W	169	326	37	23	28	2	11	1.090			
ND7519-1	169	278	38	35	25	1	1	1.090			
CO00188-4W	162	345	53	36	11	0	1	1.090			
ND8331CB-2	147	272	42	30	23	1	3	1.101			
ND8305-1	74	245	69	25	5	0	1	1.099			
Mean	235	368	33	28	31	3	4	1.090			

Table 2. IDAHO T	RIAL 2011,	Vine and tub	er characteristic	S.		
Clone	Vine Size ¹	Vine Maturity ²	Tubers/ Plant	Fresh Merit Score ³	Avg. Tuber Size (oz.)	Tuber Shape⁴
ATLANTIC	2.0	2.3	7.6	2.5	6.3	2.3
NY140	2.5	3.0	9.1	1.0	5.5	2.6
SNOWDEN	2.0	3.0	10.1	2.2	4.4	1.5
MSR061-1	2.0	2.8	8.4	3.6	5.0	1.3
MSL292-A	2.5	1.8	10.7	2.3	4.1	1.0
W4980-1	1.5	2.0	6.8	3.2	5.1	1.8
MSJ126-9Y	1.5	2.5	7.4	2.5	5.6	1.5
W2978-3	2.0	1.5	9.2	3.3	4.1	1.5
W2310-3	2.0	2.0	8.1	2.5	4.5	2.3
W5015-12	2.5	2.8	12.2	1.8	3.4	1.3
MN99380-1	1.0	1.0	11.2	2.0	3.6	1.3
CO00197-3W	2.0	2.0	11.8	2.5	3.9	2.3
ND7519-1	2.0	2.0	10.7	3.2	3.9	1.5
CO00188-4W	1.5	1.0	10.8	3.0	3.3	1.0
ND8331CB-2	2.0	2.0	9.2	1.8	3.5	1.0
ND8305-1	2.0	2.3	12.6	1.5	2.1	2.0
Mean ¹ (1-5) 5=Large ² (1-5) 5=Late ³ (1-5) 5=Best Prefe ⁴ (1-5) 1=Round	1.9 rence Score	2.1	9.7	2.4	4.3	1.6

External defects ⁴ Eye %	Table 3. IDAHO T	RIAL 2011,	External a	and Interna	I Defects.				
Growth Eye %<		Exte	rnal defec	ts ⁴			Internal De	efects ⁶	
Cione Scab Cracks Knobs Depth 5 HH BC IBS VD ATLANTIC 3.3 4.8 4.5 3.3 60 0 0 0 NY140 2.8 5.0 4.5 2.8 8 0 0 0 0 SNOWDEN 3.8 4.8 4.8 1.8 0 0 0 0 MSR061-1 3.3 4.7 5.0 2.9 68 0 0 0 0 MSL292-A 4.0 5.0 5.0 3.5 3 0 0 0 W4980-1 4.3 5.0 5.0 3.5 15 0 0 0 W2978-3 3.5 5.0 5.0 3.8 3 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 ND7519-1 3.7 4.7 5.0 4.0 0 0 </th <th></th> <th></th> <th>Growth</th> <th></th> <th>Eye</th> <th>%</th> <th>%</th> <th>%</th> <th>%</th>			Growth		Eye	%	%	%	%
ATLANTIC 3.3 4.8 4.5 3.3 60 0 0 0 NY140 2.8 5.0 4.5 2.8 8 0 0 0 SNOWDEN 3.8 4.8 4.8 1.8 0 0 0 0 MSR061-1 3.3 4.7 5.0 2.9 68 0 0 0 MSL292-A 4.0 5.0 5.0 2.5 13 0 0 0 W4980-1 4.3 5.0 5.0 3.5 3 0 0 0 W2978-3 3.5 5.0 5.0 3.5 15 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W2310-3 4.0 4.8 5.0 5.0 3.8 3 0 0 0 C000197-3W 3.5 5.0 4.0 4.0 3 0	Clone	Scab	Cracks	Knobs	Depth ⁵	НН	BC	IBS	VD
NY140 2.8 5.0 4.5 2.8 8 0 0 0 SNOWDEN 3.8 4.8 4.8 1.8 0 0 0 0 MSR061-1 3.3 4.7 5.0 2.9 68 0 0 0 MSL292-A 4.0 5.0 5.0 2.5 13 0 0 0 W4980-1 4.3 5.0 5.0 3.5 3 0 0 0 MSL292-A 4.0 4.5 5.0 2.2 25 0 0 0 W4980-1 4.3 5.0 5.0 3.5 15 0 0 0 W2978-3 3.5 5.0 5.0 3.5 15 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 <	ATLANTIC	3.3	4.8	4.5	3.3	60	0	0	0
SNOWDEN 3.8 4.8 4.8 1.8 0 0 0 0 MSR061-1 3.3 4.7 5.0 2.9 68 0 0 0 MSL292-A 4.0 5.0 5.0 2.5 13 0 0 0 W4980-1 4.3 5.0 5.0 3.5 3 0 0 0 MSJ126-9Y 4.0 4.5 5.0 2.2 25 0 0 0 W2978-3 3.5 5.0 5.0 3.5 15 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W5015-12 3.3 5.0 5.0 3.8 3 0 0 0 C000197-3W 3.5 5.0 4.0 4.0 3 0 0 0 0 ND7519-1 3.7 4.7 5.0 3.0 0 0 0 0 0 0 ND8331CB-2 4.0 4.8 4.5 3.3	NY140	2.8	5.0	4.5	2.8	8	0	0	0
MSR061-1 3.3 4.7 5.0 2.9 68 0 0 0 MSL292-A 4.0 5.0 5.0 2.5 13 0 0 0 W4980-1 4.3 5.0 5.0 3.5 3 0 0 0 MSJ126-9Y 4.0 4.5 5.0 2.2 25 0 0 0 W2978-3 3.5 5.0 5.0 3.5 15 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W5015-12 3.3 5.0 5.0 3.8 3 0 0 0 C000197-3W 3.5 5.0 4.0 4.0 3 0 0 0 0 C000197-3W 3.5 5.0 4.0 4.0 0 0 0 0 0 ND8331CB-2 4.0 4.8 4.5 2.5 8 <td>SNOWDEN</td> <td>3.8</td> <td>4.8</td> <td>4.8</td> <td>1.8</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	SNOWDEN	3.8	4.8	4.8	1.8	0	0	0	0
MSL292-A 4.0 5.0 5.0 2.5 13 0 0 0 W4980-1 4.3 5.0 5.0 3.5 3 0 0 0 MSJ126-9Y 4.0 4.5 5.0 2.2 25 0 0 0 W2978-3 3.5 5.0 5.0 3.5 15 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W5015-12 3.3 5.0 5.0 3.8 3 0 0 0 MN99380-1 3.0 5.0 4.3 3.0 0 0 0 0 CO00197-3W 3.5 5.0 4.0 4.0 3 0 0 0 0 ND7519-1 3.7 4.7 5.0 3.0 0	MSR061-1	3.3	4.7	5.0	2.9	68	0	0	0
W4980-1 4.3 5.0 5.0 3.5 3 0 0 0 MSJ126-9Y 4.0 4.5 5.0 2.2 25 0 0 0 W2978-3 3.5 5.0 5.0 3.5 15 0 0 0 W2978-3 3.5 5.0 5.0 3.5 15 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W2310-3 4.0 4.8 5.0 5.0 3.8 3 0 0 0 W5015-12 3.3 5.0 4.0 4.0 3 0	MSL292-A	4.0	5.0	5.0	2.5	13	0	0	0
MSJ126-9Y 4.0 4.5 5.0 2.2 25 0 0 0 W2978-3 3.5 5.0 5.0 3.5 15 0 0 0 W2978-3 3.5 5.0 5.0 3.5 15 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W5015-12 3.3 5.0 5.0 3.8 3 0 0 0 MN99380-1 3.0 5.0 4.3 3.0 0 0 0 0 CO00197-3W 3.5 5.0 4.0 4.0 3 0 0 0 ND7519-1 3.7 4.7 5.0 3.0 0 0 0 0 ND8331CB-2 4.0 4.8 4.5 3.3 0 0 0 0 0 ND8305-1 3.8 4.8 4.5 3.3 0 0 0 0 0 * * * * * * * </td <td>W4980-1</td> <td>4.3</td> <td>5.0</td> <td>5.0</td> <td>3.5</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td>	W4980-1	4.3	5.0	5.0	3.5	3	0	0	0
W2978-3 3.5 5.0 5.0 3.5 15 0 0 0 W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W5015-12 3.3 5.0 5.0 3.8 3 0 0 0 MN99380-1 3.0 5.0 4.3 3.0 0 0 0 0 CO00197-3W 3.5 5.0 4.0 4.0 3 0 0 0 ND7519-1 3.7 4.7 5.0 4.0 0 0 0 0 CO00188-4W 4.8 5.0 5.0 3.0 0 0 0 0 ND8331CB-2 4.0 4.8 4.5 3.3 0 0 0 0 ND8305-1 3.8 4.8 4.5 3.3 0 0 0 0 0 * * * * * * * * * * * * * * * * * * * </td <td>MSJ126-9Y</td> <td>4.0</td> <td>4.5</td> <td>5.0</td> <td>2.2</td> <td>25</td> <td>0</td> <td>0</td> <td>0</td>	MSJ126-9Y	4.0	4.5	5.0	2.2	25	0	0	0
W2310-3 4.0 4.8 5.0 2.9 3 0 0 0 W5015-12 3.3 5.0 5.0 3.8 3 0 0 0 MN99380-1 3.0 5.0 4.3 3.0 0 0 0 0 CO00197-3W 3.5 5.0 4.0 4.0 3 0 0 0 ND7519-1 3.7 4.7 5.0 4.0 0 0 0 0 CO00188-4W 4.8 5.0 5.0 3.0 0 0 0 0 ND8331CB-2 4.0 4.8 4.5 2.5 8 0 0 0 ND8305-1 3.8 4.8 4.5 3.3 0 0 0 0 * * * * * * * * * * * * * * * 3.3 0 0 0 0 * * * * * * * * <	W2978-3	3.5	5.0	5.0	3.5	15	0	0	0
W5015-12 3.3 5.0 5.0 3.8 3 0 0 0 MN99380-1 3.0 5.0 4.3 3.0 0 0 0 0 0 CO00197-3W 3.5 5.0 4.0 4.0 3 0 0 0 0 ND7519-1 3.7 4.7 5.0 4.0 0 0 0 0 0 CO00188-4W 4.8 5.0 5.0 3.0 0	W2310-3	4.0	4.8	5.0	2.9	3	0	0	0
MN99380-1 3.0 5.0 4.3 3.0 0 0 0 0 0 CO00197-3W 3.5 5.0 4.0 4.0 3 0 0 0 0 ND7519-1 3.7 4.7 5.0 4.0 0 0 0 0 0 CO00188-4W 4.8 5.0 5.0 3.0 0 0 0 0 0 ND8331CB-2 4.0 4.8 4.5 2.5 8 0 <td>W5015-12</td> <td>3.3</td> <td>5.0</td> <td>5.0</td> <td>3.8</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td>	W5015-12	3.3	5.0	5.0	3.8	3	0	0	0
CO00197-3W 3.5 5.0 4.0 4.0 3 0 0 0 ND7519-1 3.7 4.7 5.0 4.0 0 0 0 0 0 CO00188-4W 4.8 5.0 5.0 3.0 0 0 0 0 0 ND8331CB-2 4.0 4.8 4.5 2.5 8 0 0 0 ND8305-1 3.8 4.8 4.5 3.3 0 0 0 0 Mean 3.7 4.8 4.8 3.0 12.8 0.0 0.0 0.0 ⁴ (1-5) 5=None	MN99380-1	3.0	5.0	4.3	3.0	0	0	0	0
ND7519-1 3.7 4.7 5.0 4.0 0	CO00197-3W	3.5	5.0	4.0	4.0	3	0	0	0
CO00188-4W 4.8 5.0 5.0 3.0 0 0 0 0 0 ND8331CB-2 4.0 4.8 4.5 2.5 8 0 0 0 ND8305-1 3.8 4.8 4.5 3.3 0 0 0 0 Mean 3.7 4.8 4.8 3.0 12.8 0.0 0.0 0.0 ⁴ (1-5) 5=None 5 (1-5) 1=deep, 5=shallow. 6 6 Percent of defects on 10 large tubers 6	ND7519-1	3.7	4.7	5.0	4.0	0	0	0	0
ND8331CB-2 4.0 4.8 4.5 2.5 8 0 0 0 ND8305-1 3.8 4.8 4.5 3.3 0 0 0 0 Mean 3.7 4.8 4.8 3.0 12.8 0.0 0.0 0.0 ⁴ (1-5) 5=None 5 (1-5) 1=deep, 5=shallow. 6 Percent of defects on 10 large tubers 0 0.0 0.0 0.0	CO00188-4W	4.8	5.0	5.0	3.0	0	0	0	0
ND8305-1 3.8 4.8 4.5 3.3 0 0 0 0 0 Mean 3.7 4.8 4.8 3.0 12.8 0.0 0.0 0.0 ⁴ (1-5) 5=None 5 5=Shallow. 6 Percent of defects on 10 large tubers 10 large tubers </td <td>ND8331CB-2</td> <td>4.0</td> <td>4.8</td> <td>4.5</td> <td>2.5</td> <td>8</td> <td>0</td> <td>0</td> <td>0</td>	ND8331CB-2	4.0	4.8	4.5	2.5	8	0	0	0
Mean 3.7 4.8 4.8 3.0 12.8 0.0 0.0 0.0 ⁴ (1-5) 5=None 5 5=Shallow. 5 6 Percent of defects on 10 large tubers 6 10	ND8305-1	3.8	4.8	4.5	3.3	0	0	0	0
 ⁴ (1-5) 5=None ⁵ (1-5) 1=deep, 5=shallow. ⁶ Percent of defects on 10 large tubers 	Mean	3.7	4.8	4.8	3.0	12.8	0.0	0.0	0.0
 ⁵ (1-5) 1=deep, 5=shallow. ⁶ Percent of defects on 10 large tubers 	⁴ (1-5) 5=None								
⁶ Percent of defects on 10 large tubers	⁵ (1-5) 1=deep, 5=sl	hallow.							
	⁶ Percent of defects	on 10 large t	ubers						
HH=hollow heart. BC=brown center. IBS=internal brown spot. VD=vascular discoloration	HH=hollow heart. B0	C=brown cen	ter. IBS=inte	ernal brown s	pot. VD=vascular dis	scoloration			

Table 4. IDAHO	TRIAL 2011, Harvest Quality Report and	Field Diseases		
Clone	Appearance comments	Chip color	Early Blight ⁷	Verticillium Wilt ⁷
ATLANTIC	Nonuniform shape, attached stolons	na	2.3	2.3
NY140	nonuniform shape		3.0	2.8
SNOWDEN	deep eye, attached stolons		2.5	2.5
MSR061-1	Nice, round, scaley buff		2.0	2.3
MSL292-A	Compressed with deep ends		2.0	1.8
W4980-1	Nice, round, scaley buff, small		2.3	2.0
MSJ126-9Y	Some misshaped, deepends		2.0	2.0
W2978-3	white, oval, flat, attached stolons		1.3	1.5
W2310-3	Buff, flat, nonuniform		2.3	2.0
W5015-12	Round, scaley, flat, attached stolons		2.5	2.0
MN99380-1	Yellow, scaley, elongated, sprouting		1.0	1.0
CO00197-3W	Some elongated,		1.5	2.0
ND7519-1	white, small, misshaped		2.3	1.8
CO00188-4W	very small round white		1.0	1.0
ND8331CB-2	small, round buff, deep eyes,		2.5	1.8
ND8305-1	very small, yellow		2.0	2.0
Mean ⁷ (1-5) 1=severe			2.0	1.9

Maine Regional Trial

****YIELD, GRADE, AND OUT-OF-FIELD QUALITY REPORT****

US POTATO BOARD/SNACK FOOD ASSOCIATION POTATO CHIP VARIETY TRIAL, MAINE 2011

Cooperators:

Local Coordinator: Greg Porter 5722 Deering Hall, Room 114 University of Maine Orono, ME 04469-5722 (207) 581-2943 porter@maine.edu <u>Cooperating Grower(s):</u> Aroostook Research Farm University of Maine 59 Houlton Road Presque Isle, ME 04769

Aroostook Produce Distributors Gerry Miller Houlton, ME 04730

<u>Cooperating Processor:</u> Frito-Lay, Inc Dennis Deary, Process Mgr. 1886 Upper Maple Street Dayville, CT 06241 (860)779-0200x2304 Deary.Dennis@Fritolay.com

Variety Entries:

Atlantic (Field Std.) Snowden (Storage Std.) AF2291-10 CO00188-4W CO00197-3W MSJ126-9Y MSL292-A MSR061-1 ND7519-1 ND8305-1 ND8331Cb-2 NY140 NYE106-4 W2310-3 W2978-3 W4980-1 W5015-12

SFA Coodinator: Donald E. Halseth Cornell University 150 Plant Science Building Ithaca, NY 14853 (607)255-5460 deh3@cornell.edu

ME, University of Maine, Greg Porter CO, San Luis Valley Res. Ctr., David Holm CO, San Luis Valley Res. Ctr., David Holm MI, Michigan State Univ., David Douches MI, Michigan State Univ., David Douches MI, Michigan State Univ., David Douches ND, N. Dakota State Univ., Susie Thompson NY, Cornell University, Walter DeJong NY, Cornell University, Walter DeJong WI, University of Wisconsin, Jiwan Palta WI, University of Wisconsin, Jiwan Palta WI, University of Wisconsin, Jiwan Palta WI, University of Wisconsin, Jiwan Palta

Trial Information:

Location:	Aroostook Research Farm, Presque Isle, ME						
Soil Type:	Caribou loam						
Soil Test:	pH 5.6 Avail P (MH), K (MH), Ca (M), Mg (MH)						
	2.8% soil organic matter						
Previous Crop:	timothy/clover (2010), oats (2009)						
Planting Date:	May 26, 2011						
Plot size/design:	36" row spacing, plots 2 rows x 30'						
	Randomized (RCBD), four replicates per variety						
Fertilization:	154-154-154 at planting						
	Foliar boron applied July 19						
In-row Spacing:	10" except Snowden (14"), AF2291-10 (8"), NY140 (8")						
Crop Management:	Typical of commercial production in the area						
Sprout Inhibitor:	MH-30 applied August 12						
Vinekill Date:	August 31, 2011 (97 DAP)						
Harvest Date:	September 13, 2011						
Processing Date:	September 19, 2011						

Procedures:

Seed potatoes were received from the cooperating programs listed above and held under controlled storage conditions at Aroostook Research Farm, Presque Isle, ME. The seed potatoes were warmed and hand-cut about two weeks prior to planting. They were suberized in controlled storage and hand-planted without a commercial seed treatment.

The trial was managed using practices typical of the production area. Weeds were controlled with a standard herbicide program followed by normal cultivation and hilling. Insect pests were controlled with an in-furrow insecticide. Subsequent foliar insecticides were applied based on insect pressure determined by regular scouting for pests. Foliar diseases were controlled using a conventional spray program based on the University of Maine Cooperative Extension's IPM program. Late blight was not observed in this trial during 2011. Vine desiccation was accomplished using a standard chemical desiccant. Natural rainfall was abundant throughout the 2011 season and far exceeded the 30-year average (Table 1). No supplemental irrigation was applied. The plots were harvested with a hand crew following lifting with a one-row, research-scale potato digger. All tubers were weighed and a 50-lb sample was graded for external defects and sized using a spool-type sizer. Ten tubers per size class were examined for hollow heart. Specific gravity was determined on a 5-kg sample using the weight-in-air/weight-in-water method. A 50-lb sample was collected at harvest and shipped to Frito-Lay's Dayville plant for evaluation of chip quality. Additional tuber samples were placed in controlled storage for evaluation of chip color during the storage season.

Results:

There was excess rainfall through most of the 2011 growing season (Table 1). Early crop growth was good and most of the clones were still growing vigorously at vinekill (Table 2). No late blight was observed in the plots during 2011. Early dying was not a problem either and most of the varieties were still green and vigorous at the time of vine desiccation (Table 2, 97 days after planting).

NY140, NYE106-4, AF2291-10, and MSL292-A had the highest US#1 yields in the experiment (Table 3). ND7519-1, ND8331Cb-2, CO00197-3W, and ND8305-1were relatively low yielding. ND7519-1, ND8331Cb-2, ND8305-1, NYE106-4, W2310-3, and AF2291-10 had particularly high specific gravity. ND8305-1 had a very small tuber size profile. CO00188-4W, CO00197-3W, MSR061-1, ND7519-1, ND8331Cb-2, NYE106-4, and W5015-12 also had smaller tuber size profiles than would be ideal.

NY140 and MSJ126-9Y had low external defects incidence (Table 4). CO00197-3W, ND7519-1, ND8305-1, ND8331Cb-2, and W2978-3 had greater than 10% external defects. Scab was the most prevalent external defect, especially in ND8305-1, W2978-3, and ND7519-1; however, off-shapes (CO00197-3W, ND8331Cb-2, Snowden), growth cracks (Atlantic, Snowden), and sunburn (CO00197-3W, ND7519-1) were prevalent in several clones. Greater than 15 percent hollow heart was observed in 2-1/2 to 3-1/4" tubers of NY140, MSJ126-9Y, W5015-12, Atlantic, Snowden, W2978-3, and MSR061-1. No hollow heart was observed in NYE106-4, ND8331Cb-2, and ND8305-1 (Table 4). There were too few tubers in the larger tuber size classes to allow collection of meaningful hollow heart data in large-sized tubers.

Tuber characteristics are summarized in Table 5. CO00188-4, ND7519-1, NY140, and W2978-3 had the best external tuber appearance. Atlantic, Snowden, MSJ126-9Y, MSL292-A, and NYE106-4 had indented stem ends and/or deep apical eyes which would make peeling difficult. Tubers of W5015-12, NYE106-4, W2310-3, and ND8305-1 were judged to have an undesirably flat cross section. NY140, CO00197-3W, AF2291-10, and ND8305-1 were more oblong than is desirable for chipping.

Chip color evaluations were conducted at the Frito-Lay plant in Dayville, CT (Table 6). W2978-3 and MSR061-1 had undesirable color and a relatively high incidence of chip defects otherwise the chip samples were fair (Atlantic, Snowden, NY140, NYE106-4, ND7519-1, CO00197-3W) to good (all others).

Susceptibility to skinning and bruising was evaluated by tumbling tuber samples in a drum. MSJ126-9Y, CO00188-4W, and MSR061-1 were especially resistant to skinning, while CO00197-3W, W4980-1, ND8305-1, MSL292-A, and W5015-12 were relatively susceptible. ND8331Cb-2, MSJ126-9Y, CO00197-3W, and CO00188-4W were relatively resistant to bruise damage, while ND8305-1 and NYE106-4 were quite susceptible (Table 7).

Month	(inches	s)		Total	Avera	Average (°F)	
	1	2	3	4	(inches)	High	Low
May	2.39	0.63	0.78	2.13	5.93	63.8	43.5
June	0.45	3.59	1.20	3.40	8.64	72.6	51.0
July	0.67	0.59	1.30	3.26	5.82	80.0	57.0
August	2.67	1.82	1.15	3.37	9.01	76.2	56.5
September	2.00	0.46	0.41	0.10	2.97	71.1	49.0
Grand total					32.37		

Table 1. Rainfall and temperature, 2011 Aroostook Research Farm, Presque Isle, ME

Table 2. Plant characteristics, UPSB/SFA Chip Variety Trial, Maine, 2011.

	%					
Variety/Clone	Plant	Vigor	Vigor	Vine		Foliar Disease
·	Stand	Early	Late	Mat.	Foliage Color	Problems
NY140	100	G	VG	Late	Med. green	None
NYE106-4	99	F-G	VG	Late	Med. green	None
AF2291-10	96	F-G	VG	Late	Med. green	None
MSL292-A	99	F-G	VG	M. Late	Med. green	None
W4980-1	99	G	G	Mid-season	Med. green	None
W5015-12	91	F-G	VG	Late	Pale green	None
MSJ126-9Y	86	F-G	F	Late	Dk. Med. green	n None
Atlantic	92	F-G	VG	M. Late	Med. Green	None
Snowden	99	F-G	VG	Late	Pale green	None
CO00188-4W	99	G	G	Mid-season	Med. green	None
W2978-3	99	G	VG	M. early	Pale green	None
W2310-3	97	F-G	VG	M. Late	Dk. Med. green	n None
MSR061-1	89	F-G	VG	M. Late	Pale green	None
ND7519-1	82	F-P	VG	Late	Med. green	None
ND8331Cb-2	100	F-G	VG	Mid-season	Pale green	None
CO00197-3W	80	F-G	VG	M. Late	Med. green	None
ND8305-1	92	F-P	G	Late	Med. green	None
					-	

	Yield	d (cwt/	$A)^1$	Siz	e Di	strib	outio	n (%	<u>6 by we</u>	eight) ²	Spec.
Variety/Clone	Tot.	US#1 9	%Std	1	2	3	4	5	1-7/8	2-1/2	Grav.
									to 4"	to 4"	
NY140	376	326	122	10	31	40	19	0	90	19	1.082
NYE106-4	379	303	113	14	43	34	9	0	86	9	1.087
AF2291-10	341	299	112	7	26	40	27	0	93	27	1.086
MSL292-A	344	297	111	8	26	36	28	1	92	29	1.082
W4980-1	334	290	108	6	29	35	27	3	94	30	1.083
W5015-12	340	281	105	13	35	33	16	2	87	18	1.085
MSJ126-9Y	303	279	104	5	21	36	33	6	95	39	1.079
Atlantic	314	268	100	6	24	32	34	3	94	37	1.085
Snowden	291	243	91	7	25	36	29	3	93	32	1.085
CO00188-4W	300	240	90	13	37	36	14	0	87	15	1.079
W2978-3	328	233	87	11	33	35	20	0	89	20	1.082
W2310-3	272	229	85	10	29	37	25	0	90	25	1.087
MSR061-1	273	223	83	12	35	33	20	0	88	20	1.081
ND7519-1	272	202	75	12	35	38	14	0	88	15	1.091
ND8331Cb-2	271	190	71	18	37	32	13	0	82	13	1.089
CO00197-3W	253	173	65	18	35	29	17	0	82	18	1.081
ND8305-1	208	87	32	43	44	12	1	0	57	1	1.089
Mean	306	245							87	$\gamma\gamma$	1 08/
CV(%)	10.1	13.0							53	30.4	0.31
UV(70)	10.1	15.9							5.5	30.4 Q	0.01
¹ US#1 vield was calc	⊥+∠ Datedu	-TJ ac via	ld from	1% to	∕!" A	liam	otor	mir	U nne tube	7 re with 4	o.000
US#1 yielu was cale	urated	as yle	iu nom	1 /8 10	4 U	uaiile		11111	ius tube	15 WILL	TAUTHAI

Table 3. Yield, size distribution, and specific gravity, UPSB/SFA Chip Variety Trial, Maine, 2011.

defects.

²Size Classes: $1=1\frac{1}{2}$ to $1\frac{7}{8}$ "; $2=1\frac{7}{8}$ to $2\frac{1}{2}$ "; $3=2\frac{1}{2}$ to $3\frac{1}{4}$ "; $4=3\frac{1}{4}$ to 4"; 5= over 4"

							Hollo	w Hear	t
Variety/Clone	Extern	nal Def	fects (%	by wei	ight)		<u>by Siz</u>	ze Clas	$s^{1}(\%)$
	Total	Sunb	Mshp	Grck	Scab	Rot	3	4	5
NY140	3.4	1.6	1.1	0.3	0.3	0.1	20.0	n/a	n/a
NYE106-4	7.6	0.3	0.9	0.2	5.8	0.4	0.0	n/a	n/a
AF2291-10	6.4	1.4	2.9	0.4	1.1	0.6	15.0	100	n/a
MSL292-A	6.3	2.7	1.0	1.0	1.0	0.6	12.5	67	n/a
W4980-1	7.2	1.3	3.9	0.4	1.1	0.5	2.5	13	0
W5015-12	5.6	2.4	2.1	0.9	0.0	0.3	27.5	71	n/a
MSJ126-9Y	3.1	1.2	0.8	0.9	0.0	0.2	17.5	31	n/a
Atlantic	8.7	2.3	2.4	2.0	0.6	1.5	40.0	100	n/a
Snowden	9.5	2.2	4.9	2.2	0.0	0.2	20.0	57	n/a
CO00188-4W	8.6	1.4	0.6	0.3	6.1	0.2	2.5	100	n/a
W2978-3	19.1	1.3	0.8	0.2	14.1	2.7	17.5	0	n/a
W2310-3	6.7	1.1	1.7	1.3	1.5	1.1	5.0	n/a	n/a
MSR061-1	7.8	0.9	1.1	0.9	2.8	2.1	17.5	n/a	n/a
ND7519-1	14.7	4.0	1.6	0.0	8.7	0.3	2.5	0	n/a
ND8331Cb-2	14.8	3.0	7.2	1.2	2.4	1.0	0.0	n/a	n/a
CO00197-3W	16.7	3.9	5.6	1.0	3.9	2.4	5.0	0	n/a
ND8305-1	29.6	2.8	1.9	0.4	23.1	1.3	0.0	n/a	n/a
Mean	10.3								
CV(%)	54.0								

Table 4. External tuber defects and hollow heart incidence, UPSB/SFA Chip Variety Trial, Maine, 2011.

LSD(k=100) 7.8

¹Size Classes: $1=1\frac{1}{2}$ to $1\frac{7}{8}$ "; $2=1\frac{7}{8}$ to $2\frac{1}{2}$ "; $3=2\frac{1}{2}$ to $3\frac{1}{4}$ "; $4=3\frac{1}{4}$ to 4"; 5= over 4"; n/a indicates that no tubers were examined for hollow heart in this size category.

Variety/Clone	Shape	Skin	Eye	Gen.	
		Tex-	Depth	Appear.	Comments
		ture			
NY140	O-R	M-S	M-S	F-G	too oblong
NYE106-4	R	Sln	M-D	F	dse, dae, flat
AF2291-10	O-R	Sln.	M-S	F	pears, non-uniform shape
MSL292-A	R-O	Net	M-D	F	dull, dse, dae
W4980-1	R	Net	M-S	F	dull, small
W5015-12	R-O	Net	M-S	F-P	flat, dark, heavy net
MSJ126-9Y	R-O	Net	M-D	F	dae, dse
Atlantic	R-O	Net	M-D	F	dse, dae, lenticels
Snowden	R-O	Net	M-D	F-P	dull, off shapes, dse, dae
CO00188-4W	R-O	Sln.	M-S	F-G	nice
W2978-3	R-O	M-S	M-S	F-G	bright, small, scab
W2310-3	R-O	Net	M-S	F-P	tan, flat, dull, lenticels
MSR061-1	R	Net	M-S	F	dull
ND7519-1	R-O	M-S	M-S	F-G	bright
ND8331Cb-2	R-O	Sln.	M-S	F-P	pears, off shapes
CO00197-3W	Obl	Sln.	M-S	F-P	too oblong, off shapes
ND8305-1	O-R	Sln.	M-S	F-P	tiny, flat, off shapes, scab

Table 5. Tuber characteristics, UPSB/SFA Chip Variety Trial, Maine, 2011.

Shape: R=mostly round; R-O=round to oblong; O-R=oblong to round; O=oblong Skin Texture: S=smooth; M-S=moderately smooth; Sln.=slight net; Net=strongly netted Eye Depth: S=shallow; M-S=moderate to shallow; M-D=moderate to deep; D=deep Flesh Color: Wh=white; OW=off white; YF=yellow fleshed, higher numbers indicate brighter yellow; dse=deep stem end; dae=deep apical end.

<u>Frito-Lay Plant Data, Dayville, CT (September 19, 2011)</u>								
Variety/Clone	Total	Color ¹	Defect	s (%)		Comments		
	Solids		Ext.	Int.	Tot.			
NY140	n/a	67.5	2.5	5.3	8.8	Defects had color		
NYE106-4	n/a	Good	10.0	2.2	12.2	Lots of color		
AF2291-10	n/a	Good	0.0	0.0	0.0	Very nice		
MSL292-A	n/a	Good	2.2	0.0	2.2	Very nice		
W4980-1	n/a	Good	1.2	2.3	3.5	Very nice		
W5015-12	n/a	Good	1.3	0.0	1.3	Very nice		
MSJ126-9Y	n/a	Good	2.4	4.5	6.9	A bit of everything		
Atlantic	n/a	Good	5.3	1.1	6.4	Some color, externals		
Snowden	n/a	Good	1.0	6.0	7.0	Lots of color		
CO00188-4W	n/a	Good	0.0	0.0	0.0	Very nice		
W2978-3	n/a	Poor	7.0	16.0	23.0	Very bad color		
W2310-3	n/a	Good	0.0	0.0	0.0	Very nice		
MSR061-1	n/a	Good	11.0	6.0	17.0	Externals, poor color		
ND7519-1	n/a	68.9	3.6	6.4	10.0	Vascular ring color		
ND8331Cb-2	n/a	Good	0.0	0.0	0.0	Very nice		
CO00197-3W	n/a	Good	0.0	3.5	3.5	Some internal color		
ND8305-1	n/a	Good	1.3	4.0	5.3	Not bad		
¹ Higher L-values indi	cate ligh	ter color. All	A-valu	es were	e rated "	good" except for		

Table 6. Chip quality one week after harvest, UPSB/SFA Chip Variety Trial, Maine, 2011.

ND7519-1 (-0.41), NY140 (+1.1), and W2978-3 (not good).

Table 7. Bruise susceptibility scores, October 2011, UPSB/SFA Chip Variety Trial, Maine, 2011.

Variety/Clone <u>Skinning & Bruise (tumble method)¹</u>								
	Prior to	D Peeling	Peeled Tu	bers	Comments on			
	Index	% Skin	% Incid.	% Surf.	peeled tubers			
		Cracks						
NY140	5.50	13.2	88.9	7.9				
NYE106-4	6.06	20.0	95.0	15.3				
AF2291-10	5.56	8.3	76.7	6.2				
MSL292-A	6.36	16.7	81.4	8.9				
W4980-1	6.47	13.3	85.8	9.9	white			
W5015-12	6.37	10.0	86.7	7.6				
MSJ126-9Y	3.42	31.7	58.3	3.5	yellow			
Atlantic	4.20	21.7	91.4	9.1				
Snowden	4.17	18.1	79.3	6.1				
CO00188-4W	2.99	32.4	63.3	4.8				
W2978-3	4.75	15.8	78.3	6.6	white			
W2310-3	5.86	15.4	85.0	7.7				
MSR061-1	3.23	11.6	78.3	5.3				
ND7519-1	6.34	28.2	70.0	5.5				
ND8331Cb-2	5.98	15.0	61.7	3.7				
CO00197-3W	6.62	18.3	75.0	5.1				
ND8305-1	6.40	44.4	98.1	30.6				
Mean	5.29	19.6	79.6	8.5				
CV(%)	13.2	57.1	11.5	28.5				
LSD(k=100)	0.92	18.1	12.7	3.1				

¹Sixty tubers were evaluated per variety/clone. Fifteen tubers per plot were tumbled on September 21 (1 day after harvest) in a paddled drum for 1 minute at 15 rpm. Index scores indicate combined severity of skinning plus fresh bruise (higher values indicate more severe bruising) rated on September 21. Percent incidence (% of tubers with visible bruise) and surface area values are combined scores for shatter and blackspot rated on peeled tubers (October 28, 2010)

Variety/Clone Summary 2011:

<u>NY140:</u> Late vine maturity, oblong to round tubers with moderately- smooth skin, and moderately-shallow eyes. Good yields, low external defects incidence, moderate specific gravity, moderate hollow heart incidence, fair September chip quality, and moderate bruise susceptibility. Tubers were more oblong than would be desirable.

<u>NYE106-4</u>: Late vine maturity, round slightly flattened tubers with slightly netted skin, and moderately-deep eyes. Good yields, low external defects incidence, high specific gravity, low hollow heart incidence, fair September chip quality, and moderate to high bruise susceptibility.

<u>AF2291-10:</u> Late vine maturity, oblong to round tubers with slightly netted skin, and moderately-shallow eyes. Good yields, low external defects incidence, high specific gravity, moderate hollow heart incidence, good September chip quality, and moderate bruise susceptibility. Non-uniform tuber shape was a problem with this clone.

<u>MSL292-A:</u> Medium-late vine maturity, round to oblong tubers with netted skin, and moderately-deep eyes. Good yields, low external defects incidence, moderate specific gravity, moderate hollow heart incidence, good September chip quality, and moderate bruise susceptibility.

<u>W4980-1</u>: Mid-season vine maturity, round tubers with netted skin, and moderatelyshallow eyes. Good yields, low external defects incidence, moderate specific gravity, low hollow heart incidence, good September chip quality, and moderate bruise susceptibility.

<u>W5015-12</u>: Late vine maturity, round to oblong flattened tubers with heavily netted skin, and moderately-shallow eyes. Good yields, low external defects incidence, high specific gravity, moderately high hollow heart incidence, good September chip quality, and moderate bruise susceptibility.

<u>MSJ126-9Y</u>: Late vine maturity, round to oblong tubers with netted skin, pale yellow flesh, and moderately-deep eyes. Good yields, low external defects incidence, moderate specific gravity, moderate hollow heart incidence, fair to good September chip quality, and low to moderate bruise susceptibility.

<u>Atlantic:</u> Medium-late vine maturity, round to oblong tubers with netted skin and moderately-deep eyes. Good yields, moderate external defects incidence, high specific gravity, high hollow heart incidence, fair September chip quality, and moderate bruise susceptibility.

<u>Snowden:</u> Late vine maturity, round to oblong tubers with netted skin and moderatelydeep eyes. Fair to good yields, moderate external defects incidence, high specific gravity, moderate hollow heart incidence, fair September chip quality, and moderate bruise susceptibility. <u>CO00188-4W</u>: Mid-season vine maturity, round to oblong tubers with slightly netted skin and moderately-shallow eyes. Fair to good yields, moderate external defects incidence, moderate specific gravity, low hollow heart incidence, good September chip quality, and low to moderate bruise susceptibility.

<u>W2978-3:</u> Medium-early vine maturity, round to oblong tubers with moderately smooth skin and moderately-shallow eyes. Fair to good yields, high external defects incidence (mostly scab), moderate specific gravity, moderate hollow heart incidence, poor September chip quality, and moderate bruise susceptibility.

<u>W2310-3:</u> Medium-late vine maturity, round to oblong flattened tubers with netted skin and moderately-shallow eyes. Fair yields, moderate external defects incidence, high specific gravity, low hollow heart incidence, good September chip quality, and moderate bruise susceptibility.

<u>MSR061-1</u>: Medium-late vine maturity, round tubers with netted skin and moderatelyshallow eyes. Fair yields, moderate external defects incidence, moderate specific gravity, moderate hollow heart incidence, poor September chip quality, and moderate bruise susceptibility.

<u>ND7519-1</u>: Late vine maturity, round to oblong tubers with moderately smooth skin and moderately-shallow eyes. Fair yields, moderately-high external defects incidence (mostly scab), high specific gravity, low hollow heart incidence, fair September chip quality, and moderate bruise susceptibility.

<u>ND8331Cb-2</u>: Mid-season vine maturity, round to oblong, small tubers with slightly netted skin and moderately-shallow eyes. Fair yields, moderately-high external defects incidence (mostly off-shapes), high specific gravity, very low hollow heart incidence, good September chip quality, and low to moderate bruise susceptibility. Non-uniform tuber shape was a problem with this clone.

<u>CO00197-3W:</u> Medium-late vine maturity, oblong, small tubers with slightly netted skin and moderately-shallow eyes. Fair to poor yields, moderately-high external defects incidence (mostly off-shapes), moderate specific gravity, low hollow heart incidence, fair September chip quality, and low to moderate bruise susceptibility. Non-uniform and oblong tuber shapes were a problem with this clone.

<u>ND8305-1</u>: Late vine maturity, oblong to round, very small tubers with slightly netted skin and moderately-shallow eyes. Poor yields, high external defects incidence (mostly scab), high specific gravity, very low hollow heart incidence, good September chip quality, and moderate to high bruise susceptibility. An extremely small tuber size profile combined with non-uniform tuber shape were serious problems for this clone.

Michigan Regional Location

Local Coordinators:

Cooperating Grower:

Chris Long Dave Douches Michigan State University East Lansing, MI

Tim & Todd Young Sandyland Farms LLC Howard City, MI **Cooperating Chip Processor:**

Herr Foods, Inc. Nottingham, PA

Trial Information:

Planting Date: Vine Kill Date: Harvest Date: Between Row & In Row Plant Spacing: Plots: GDD, Base 40

June 1, 2011 September 15, 2011 October 12, 2011 (133 Days)

34" x 10"; irrigated Single rows for each entry, approximately 300' long 3036

Trial Procedure:

Seed was mechanically cut on May 1, 2011, and delivered to the grower's seed storage three days later. No seed treatments were applied at the time of seed cutting.

One pre-harvest sugar profile was taken for each variety two weeks prior to vine kill on August 31st. The pre-harvest sugar profile protocol was as follows: obtained a minimum of 40 tubers from each variety, took all the tubers from each hill, even if that required collecting more than 40 tubers. A canopy rating was taken for each variety as a percent rating of green foliage. Canopy uniformity was noted as a percentage of how uniform the foliage health appeared. The number of hills required to obtain 40 tubers was recorded, along with the total number of stems harvested. From the tubers harvested, specific gravity, a glucose value (a percent by fresh weight), a sucrose rating (a percent by fresh weight X10) and an average tuber weight (in ounces) was established.

At harvest, three plot areas of 23 feet were harvested from each entry and were used to determine yield, size distribution, specific gravity and internal defects. Two, 40 lb. storage samples were collected from each entry and were placed in the grower's commercial storage for evaluation at a later date. One set of samples will be evaluated in the winter of 2011 and the other in the spring of 2012. Eighteen, 40 tuber samples were also collected for each variety at harvest. All eighteen samples were stored at the Michigan Potato Industry Commission's Cargill Demonstration Storage Facility at approximately 48°F or 55°F for a monthly sugar profile evaluation at Techmark, Inc. Nine, 40 tuber samples were stored at each temperature for

evaluation October 2011 through June 2012. The storage sugar profiles began the day of harvest. Two out-of-the-field chip samples were taken for each variety at harvest. One was sent to Herr Foods, Inc. for processing and the additional sample was processed at Michigan State University.

A plant growth and vine vigor observation was made on June 27th. MSJ126-9Y and ND8305-1 appeared to have the slowest rate of vine growth, whereas, CO00188-4W was the most vigorous at this date. A vine maturity rating was taken for each variety on September 2, 2011, approximately two weeks prior to vine kill. W2978-1 was the most mature variety and NYE106-4 appeared to be the most immature at this date.

Growing Season Weather:

Weather conditions during the 2011 growing season were warmer than average. Growing degree days base 40 recorded for this time period was the second highest in six years at 3036. Total rainfall from June 1st through September 15th was approximately 7.39". The daytime temperatures during this growing period exceeded 90°F four days. The nighttime temperatures during this period, June through mid-September, were the second highest in six years. The tuber yield and specific gravity, for potato production in Michigan, was below average as a result of the increased nighttime heat stress.

Results:

Table 1 summarizes the yield, size distribution, and specific gravity data at harvest. NY140 topped the yield table in 2011, followed by a group of lines that yielded above average. These lines were: Atlantic, W2310-3 (Tundra), NYE106-4, Snowden, W5015-12 and MSL292-A. NY140 and Atlantic had the largest percentage of recorded oversize tubers. CO00188-4W, W2978-3, MSJ126-9Y and CO00197-3W had very low specific gravities.

Table 1. Yield ,Size D	Table 1. Yield ,Size Distribution*, Specific Gravity										
	Yield	(cwt/A)	Percent Size Distribution								
								Specific			
Entry	US#1	TOTAL	US#1	Small	Mid-Size	Large	Culls	Gravity			
NY140	491	571	90	9	84	6	1	1.079			
Atlantic	415	483	89	8	81	8	3	1.087			
W2310-3	357	411	90	8	85	5	2	1.083			
NYE106-4	345	434	79	21	76	3	0	1.087			
Snowden	342	418	82	18	78	4	0	1.075			
W5015-12	318	444	72	28	70	2	0	1.085			
MSL292-A	291	340	86	14	81	5	0	1.074			
CO00188-4W	252	367	69	31	69	0	0	1.068			
W4980-1	242	342	71	28	66	5	1	1.073			
ND7519-1	240	316	77	22	75	2	1	1.078			
W2978-3	216	361	60	40	60	0	0	1.065			
ND8331C5-2	212	351	60	37	60	0	3	1.081			
MSJ126-9Y	205	265	78	20	75	3	2	1.068			
MSR061-1	202	298	69	30	67	2	1	1.078			
ND8305-1	177	277	64	34	64	0	2	1.085			
CO00197-3W	157	271	58	38	58	0	4	1.071			
MEAN	279	372	75	24	72	3	1.3	1.077			

*small <1 7/8"; mid-size 1 7/8"-3 1/4"; large >3 1/4"

Table 2 summarizes the at-harvest tuber quality. Internal quality across the trial was generally acceptable. Hollow heart was prevalent in Atlantic and to a lesser degree in MSL292-A, ND8305-1 and W5015-12. ND7519-1 displayed three internal brown spots and Snowden and NY140 each recorded 5 vascular discoloration.

Table 2.	At-Harvest Tuber Quality.	Tuber Quality. Sandyland Farms, Howard City, Michigan.									
		Internal Defects ¹									
	Entry	нн	VD	IBS	BC	Total Cut					
	NY140	1	5	0	0	30					
	Atlantic	12	1	0	1	30					
	W2310-3	0	0	1	0	30					
	NYE106-4	0	1	0	0	30					
	Snowden	2	5	1	0	30					
	W5015-12	3	1	0	0	30					
	MSL292-A	5	0	0	0	30					
	CO00188-4W	0	1	0	0	30					
	W4980-1	0	0	1	0	30					
	ND7519-1	0	2	3	1	30					
	W2978-3	0	0	0	0	30					
	ND8331C5-2	0	0	0	0	30					
	MSJ126-9Y	1	1	0	0	30					
	MSR061-1	0	1	1	0	30					
	ND8305-1	3	0	0	0	30					
	CO00197-3W	1	0	0	0	30					
¹ Internal De	fects. HH = hollow heart, VD = va	iscular d	iscoloration, IBS	S = internal bro	own spot, BC	c = brown center.					

Table 3 shows the post-harvest chip quality based on samples collected at harvest on October 12th and processed at Herr Foods, Inc. on October 17th. Chip color was generally acceptable across the trial, with MSL292-A having the highest Agtron score of the trial at 69.4. This is the second consecutive year that MSL292-A has displayed the highest Agtron score. The varieties listed in ranked order based on quality observations from Herr Foods, Inc. are as follows: ND8331C5-2, ND7519-1, MSL292-A, Snowden, W4980-1, NYE106-4, MSJ126-9Y, W2310-3 (Tundra), ND8305-1, MSR061-1, CO00188-4W, NY140, W5015-12, CO00197-3W and W2978-3.

Table 3. 2011 Post-Harvest Chip Quality ¹ .											
	Agtron	SFA ²	Specific	Perce	nt Chip De	fects ³					
Entry	Color	Color	Gravity	Internal	External	Total					
NY140	55.1	3	1.078	29.3	3.5	32.8					
Atlantic	N/A	N/A	N/A	N/A	N/A	N/A					
W2310-3	60.5	3	1.072	19.2	6.9	26.1					
NYE106-4	57.9	3	1.080	23.1	4.7	27.8					
Snowden	62.2	2	1.071	5.4	8.0	13.4					
W5015-12	57.3	3	1.074	9.7	22.3	32.0					
MSL292-A	69.4	2	1.071	2.7	3.4	6.1					
CO00188-4W	59.2	3	1.075	5.5	16.3	21.8					
W4980-1	61.1	3	1.076	5.6	16.1	21.7					
ND7519-1	58.4	3	1.074	12.2	7.9	20.1					
W2978-3	58.7	4	1.064	29.2	7.5	36.7					
ND8331C5-2	60.2	2	1.076	3.7	5.9	9.6					
MSJ126-9Y	55.2	2	1.067	23.2	3.3	26.5					
MSR061-1	57.0	2	1.073	8.9	7.4	16.3					
ND8305-1	54.3	2	1.083	2.0	18.9	20.9					
CO00197-3W	56.1	3	1.069	22.4	11.8	34.2					

¹ Samples collected at harvest October 12th and processed by Herr Foods, Inc., Nottingham, PA on October 17, 2011 (5 days).

Chip defects are included in Agtron and SFA samples.

² SFA Color: 1= lightest, 5 = darkest

³Percent Chip Defects are a percentage by weight of the total sample; comprised of undesirable color, greening, internal defects and external defects.

N/A = Not Available

Table 4 summarizes the results of the samples collected for black spot bruise. Two, 25 tuber samples were collected at harvest. One sample served as a check and the second sample was stored for at least 12 hours at 50°F, then placed in a 6 sided plywood drum and rotated 10 times to produce a simulated bruise. Two to three weeks later, all samples were abrasively peeled and scored for the presence of black spot bruise. Among the "Simulated Bruise" samples, the best entries were CO00188-4W, W2978-3, MSJ126-9Y, MSR061-1 and CO00197-3W. NYE106-4, ND8305-1, W5015-12 and W2310-3 (Tundra) showed the lowest percent bruise free.

						A. (Check Sa	amples ¹					B. \$	Sim	ula	ated Brui	ise Samp	oles ²
								Percent	Average								Percent	Average
	<u># of</u>	Bru	ise	s P	er 1	uber	Total	Bruise	Bruises Per	<u># of</u>	Brui	se	s Pe	r Tu	ber	Total	Bruise	Bruises Per
Entry	0	1	2		34	5	Tubers	Free	Tuber	0	1	2	3	4	5	Tubers	Free	Tuber
NY140	17	7	1				25	68	0.4	12	9	4				25	48	0.7
Atlantic	9	12	2 4				25	36	0.8	11	5	3	4	1		24	46	1.1
W2310-3	11	9	4		1		25	44	0.8	9	13	4				26	35	0.8
NYE106-4	12	12	2 1				25	48	0.6	5	9	7	2	2		25	20	1.5
Snowden	17	8					25	65	0.3	13	10	1	1			25	52	0.6
W5015-12	15	9	1				25	60	0.4	6	12	5				23	26	1.0
MSL292-A	19	6					25	76	0.2	12	6	5	1			24	50	0.8
CO00188-4W	20	5					25	80	0.2	21	4					25	84	0.2
W4980-1	16	8	1				25	64	0.4	11	8	6				25	44	0.8
ND7519-1	13	12	2				25	52	0.5	15	9	1				25	60	0.4
W2978-3	23	2					25	92	0.1	19	6					25	76	0.2
ND8331C5-2	20	5					25	80	0.2	15	5	3	1			24	63	0.6
MSJ126-9Y	24	1					25	96	0.0	20	5					25	80	0.2
MSR061-1	13	7					20	65	0.4	17	8					25	68	0.3
ND8305-1	15	10)				25	60	0.4	5	16	3	1			25	20	1.0
CO00197-3W	20	6					26	77	0.2	15	10					25	60	0.4

¹Tuber samples collected at harvest and held at room temperature for later abrasive peeling and scoring.

²Tuber samples collected at harvest, held at 50°F for at least 12 hours, then placed in a 6 sided plywood drum and rotated 10 times to produce simulated bruising. They were then held at room temperature for later abrasive peeling and scoring. *Table 5* summarizes the results of the pre-harvest panel data. All varieties appeared to have stable sugar levels prior to harvest with the exception of CO00197-3W and possibly ND7519-1. The chip quality of CO00197-3W ranked poorly at Herr Foods on Oct.17th which may have been the result of the sugar immaturity observed on August 31st. CO00188-4W and W4980-1 were the earliest maturing varieties based on the canopy rating. NY140 and Atlantic had the largest average tuber weight at this date.

Table 5. Pre-Harvest	Panels, 8/3	31/11						
								Average ⁵
	Specific (Glucose ¹	Sucrose ²	Ca	nopy	Num	ber of	Tuber
Entry	Gravity	%	Rating	Rating ³	Uniform. ⁴	Hills	Stems	Weight
NY140	1.078	0.001	0.314	80	85	3	11	4.56
Atlantic	1.084	0.002	0.630	80	85	4	18	4.54
W2310-3	1.078	0.005	0.370	65	70	4	13	4.43
NYE106-4	1.074	0.002	0.376	85	80	3	15	2.43
Snowden	1.074	0.001	0.656	65	80	4	19	3.29
W5015-12	1.081	0.002	0.445	80	70	2	11	2.81
MSL292-A	1.070	0.001	0.576	40	75	3	11	3.76
CO00188-4W	1.062	0.002	0.378	5	95	3	16	2.55
W4980-1	1.066	0.001	0.366	15	45	3	13	2.44
ND7519-1	1.073	0.002	0.987	30	75	3	16	3.18
W2978-3	1.067	0.006	0.796	45	80	2	12	2.12
ND8331C5-2	1.082	0.002	0.808	50	75	3	13	2.52
MSJ126-9Y	1.069	0.001	0.798	50	85	3	17	3.30
MSR061-1	1.081	0.001	0.348	75	80	3	14	2.97
ND8305-1	1.083	0.002	0.430	50	60	3	19	3.14
CO00197-3W	1.072	0.006	1.200	70	75	3	12	2.43

¹Percent Glucose is the percent of glucose by weight in a given amount of fresh tuber tissue.

²Sucrose Rating is the percent of sucrose by weight in a given amount of fresh tuber tissue X10.

³The Canopy Rating is a percent rating of green foliage (0 is all brown dead foliage, 100 is green vigorous foliage).

⁴ The Canopy Uniformity is a percentage of how uniform the foliage health is at the date of observation.

 5 The Average Tuber Weight is the total tuber weight collected divided by the number of tubers reported in ounces.

Variety Comments:

<u>NY140:</u> This was the top yielding variety in the 2011 variety trial with a 491 cwt./A US#1 yield and an above average specific gravity at 1.079. The variety had the second largest number of oversize tubers in the trial at 6 percent. Internal raw tuber defects were moderate. NY140 performed in the bottom group at Herr Foods on October 17th, 2011, and recorded the highest percent of internal chip defects of any variety, totaling 29.3 percent. NY140 exhibited a moderate level of black spot bruise tolerance. It appears to be a full season variety.

<u>Atlantic:</u> This was the second highest yielding variety, exhibiting a 415 cwt./A US#1 yield and the highest specific gravity in the trial at 1.087. This variety had eight percent oversize tubers, but 40 percent of them were hollow. Atlantic showed the second highest black spot bruise susceptibility. The vines appeared to hold-on this growing season for an extended period of time.

<u>W2310-3 (Tundra)</u>: The US#1 yield for W2310-3 was above the trial average at 357 cwt./A. The specific gravity was good at 1.083. Internal tuber defects were low. The chip quality at Herr's was average, ranking eight of 15 varieties in out-of-the-field chip performance. Black spot bruise tolerance was moderate with an average of 0.8 bruises per tuber recorded.

<u>NYE106-4</u>: The variety was among the top yielders in the 2011 trial with a 345 cwt./A US#1 yield. This variety was tied with Atlantic for the highest specific gravity in the trial at 1.087. Raw internal tuber quality was excellent. This variety exhibits some common scab tolerance under moderate disease pressure. Chip quality ranking at Herr Foods on October 17th was good. This variety exhibited the most black spot bruise susceptibility of the trial in 2011 with 1.5 bruises per tuber being recorded. On August 31st, this variety appeared to have good vine vigor with a low sugar profile.

<u>Snowden:</u> Snowden was the fifth highest yielding variety in the 2011 variety trial with a 342 cwt./A US#1 yield and a below average specific gravity of 1.075. Internal raw tuber quality was moderate at harvest with 6 percent hollow heart and 16 percent vascular discoloration observed. This variety was above average in chip performance at Herr Foods out-of-the-field fry test. Snowden had a lower than average susceptibility to black spot bruise in the trial.

<u>W5015-12</u>: This variety had an average yield of 318 cwt./A US#1 with a specific gravity of 1.085. Internal tuber defects were moderate at harvest with 10 percent hollow heart present. Common scab susceptibility could be an issue for this variety. W5015-12 ranked 13th of 15 varieties at Herr's for chip quality out-of-the-field. The variety exhibited an above average susceptibility to black spot bruise, with one black spot bruise being recorded for each tuber observed. This variety appeared to be maturing normally in the August 31st pre-harvest panel.

<u>MSL292-A:</u> MSL292-A was above average in yield at 291 cwt./A US#1 with 5 percent oversize recorded. The specific gravity for this variety was slightly below the trial average of 1.074. This variety exhibited 17 percent hollow heart at harvest. MSL292-A is common scab susceptible. This variety ranked highest at Herr's out-of-the-field chip evaluation for Agtron color at 69.4 and the lowest for total percent chip defects at 6.1. MSL292-A was moderately resistant to black spot bruise and ranked near the trial average. This variety appeared to be mature based on the

pre-harvest panel data from August 31st where the sucrose rating was 0.576, the glucose level was 0.001 and the canopy rating was 40 percent.

<u>CO00188-4W:</u> This variety was below the trial average with a 252 cwt./A US#1 yield. The specific gravity was also below average at 1.068. Raw internal tuber quality was good. Chip quality at Herr Foods was below average, ranking 11 of 15 for overall appearance. CO00188-4W ranked as one of the best varieties for black spot bruise tolerance. This variety exhibits an early vine maturity, experiencing some significant early die symptoms and scoring a 5 percent canopy rating on the August 31st pre-harvest panel.

<u>W4980-1</u>: W4980-1 yielded 242 cwt./A US#1 with a specific gravity of 1.073. The variety had one internal brown spot in thirty cut tubers. Herr's ranked this variety 5th in the overall chip quality with the third highest Agtron score at 61.1. The line appears to have an average tolerance to black spot bruise and was very mature at the time of vine kill.

<u>ND7519-1</u>: ND7519-1 yielded below the trial average at 240 cwt./A US#1. Specific gravity was just above the trial average at 1.078. The variety had two tubers with vascular discoloration, three with internal brown spots and one with brown center in thirty cut tubers. Herr's ranked this variety 2 of 15 in chip performance out-of-the-field. ND7519-1 appeared to be one of the least susceptibile lines to black spot bruising. The plant canopy of this variety was mature on August 31st but the sucrose level appeared to be high at 0.987.

<u>W2978-3:</u> The yield on W2978-3 was below average at 216 cwt./A US#1. The specific gravity was the lowest in the 2010 and 2011 trials at 1.065. Raw internal tuber defects were very low with no defects being recorded. The ranking at Herr's was the lowest in the 2011 trial for out-of-the-field chip performance. Recorded total percent chip defects for W2978-3 was the highest in the trial at 36.7 percent. Black spot bruise tolerance was very good but somewhat expected with such a low specific gravity. This variety showed a higher than average glucose value on August 31st of 0.006. Vine maturity was average.

<u>ND8331C5-2</u>: This variety had a below average yield of US#1 tubers at 212 cwt./A and a tuber size distribution that consisted of 60 percent A-size and 37 percent undersize tubers. The specific gravity was above the trial average at 1.081. Raw internal tuber defects were very low with no defects being recorded. The at-harvest chip fry test ranked this variety 1st out of the 15 varieties for overall appearance. This variety was slightly above average for black spot bruise tolerance in the 2011 trial. Vine maturity appears to be mid to late season.

<u>MSJ126-9Y</u>: This variety recorded the fourth lowest yield in this year's trial. MSJ126-9Y was tied for the second to lowest specific gravity in the trial, which was 1.068. Internal tuber quality was generally good with only one hollow heart reported in thirty cut. This clone ranked 7th at Herr's for chip quality and appearance. The bruise free rating was 80 percent which ranked MSJ126-9Y as the second highest in black spot bruise tolerance. MSJ126-9Y appears to have a mid-season vine maturity.

<u>MSR061-1</u>: The yield on MSR061-1 was below average at 202 cwt./A US#1 with 30 percent Bsize potatoes. The specific gravity was slightly above the trial average at 1.078. Internal tuber quality was good with few defects reported. This variety ranked slightly below average for chip quality at Herr Foods in spite of the fact that it was one of the varieties with the fewest recorded total chip defects. MSR061-1 scored very well in tolerance to black spot bruise with an average of 0.3 bruises pre tuber reported. This variety appeared to have a mid to late season maturity. <u>ND8305-1</u>: This variety had a 177 cwt./A US#1 yield with an above average specific gravity of 1.085. Three hollow heart were observed in thirty cut oversize tubers at harvest. Herr's ranked this variety 9th for overall chip quality. Only 20 percent of the ND8305-1 tubers were bruise free, ranking it as one of the most bruise susceptible lines in the 2011 trial. The vine maturity appeared to be mid to late season.

<u>CO00197-3W:</u> This variety was the lowest yielding line in the 2011 trial. The US#1 yield was 157 cwt./A with a below average specific gravity. Only one hollow heart in thirty cut tubers were observed. CO00197-3W ranked 14th of 15 lines tested at Herr Foods for overall chip quality and appearance on October 17th. The variety appeared to be tolerant to black spot bruise. The line had the highest sucrose and glucose values in the trial at the time of vine kill indicating a lack of chemical maturity before harvest. This variety may have needed a longer growing season to reach maturity.

USPB-SFA 2011 ChipTrial, Black Gold, Charleston, MO

Location:	West of Diehlst	adt (Scott County)		36 57' 34.61'	'N 89 30' :	56.75" W
Objective:	1. Plant 14 diffe block design wl Monitor crop st	erent chip potato var here all ag-practices ages and, 3. Collect	ieties with would be o yield and t	in a randomize consitent throu tuber/fry quali	ed and repl ighout the ty data	icated trial, 2.
Rationale Statement:	We can expect over all 4 replic	varieties with greater ations	r yield and	quality poten	tial than ot	hers
Trial Outline:	Field ID:	Best North	#030-1900			
	Soil Test:	pH: 7.2 B: 0.17 ppm	P: Mg:	: 71 ppm : 142 ppm	K: 109 p Ca: 647 p	pm OM: 1.00% pm CEC: 4.74 meq
	Soil Type: Soil Texture:	Bosket Fine Sandy Lm 1.4 <clay%<12.1< th=""><th>(15.9ac.), So</th><th>cotco Sand (25.2a 71.3<sand%<< th=""><th>ac.), Diehlsta :91.1</th><th>dt Sandy Lm (12.2ac.)</th></sand%<<></th></clay%<12.1<>	(15.9ac.), So	cotco Sand (25.2a 71.3 <sand%<< th=""><th>ac.), Diehlsta :91.1</th><th>dt Sandy Lm (12.2ac.)</th></sand%<<>	ac.), Diehlsta :91.1	dt Sandy Lm (12.2ac.)
	Treatments: Variety: Planting Date: Planting Method: Harvest Date: Statistical Design: Replications: Sample area: Row Spacing: Scale: Seed Source: Seed Source: Seed Piece Size: Seed Spacing: Seed Treatment:	1,	14 Total of 14 3/17/2011 Harriston 8 7/7/2011 Strip Trial 4 15.3 34 / 1005 NY / CO / 2 to 4 10 Fir Bark Fl	B Row Cup Plante DA - @ 0.0585399 a feet inches of an Acre/Row MI / ND / WI / N oz inches lour + PenncoZet	er LP 1 cre per treatr / / / / / / / / / / / / / / / / / /	12 nent
	In-furrow Treatme Total Fertilizer Ap	nts: plied:	Telone / Qi N 283 / P 6	uadris / Admire 58 / K 210 / S 58	/ B 1	

1) Pre-emergence	ag-inputs	Method
1/22/2011	Telone II (7 Gal/A)	Fumigation
3/4/2011	18-46-0 (22.7 Lb/A), 0-0-60 (231.6 Lb/A), 46-0-0 (108.3 L/A), K-Mag 0-0-22-11Mg-22S (45 Lb/A) , and 14.3% Borate (7.2 Lb/A)	Broadcast
3/20/2011	10-34-0 (13.1 Gal/A), Admire Pro (7.5 Oz/A), Quadris (5.8 Oz/A), Zn Chelate 10% (1.8 Pt/A)	Side-dress
4/13/2011	32-0-0 (19.3 Gal/A)	Side-dress
2) Post-emergence	ag-inputs	Method
5/9/2011	AMS 28-0-0-24 (300 Lbs/A), Potash 0-0-60 (160 Lbs/A)	Air
5/10/2011	Intensity One (16 Oz/A), Bravo Zn (2 Pts/A), Citraplex Zn (0.5 Lb/A), Boronsol (1 Qt/A), Curzate (3.2 Oz/A)	Air
5/16/2011	N32 (3.4 Gal/A)	Irrigation
5/17/2011	Bravo Zn (2 Pts/A), Revus Top (7 Oz/A)	Air
5/18/2011	28-0-0-4S (8.8 Gal/A)	Irrigation
5/24/2011	Bravo Zn (2 Pts/A), Citraplex Zn (0.5 Lb/A), Boronsol (1 Qt/A), Scala (7 Oz/A)	Air
5/27/2011	28-0-0-4S (17.7 Gal/A)	Irrigation
6/1/2011	Ridomil Gold Bravo (2.5 Pt/A)	Air
6/6/2011	28-0-0-4S (12.1 Gal/A)	Irrigation
6/8/2011	Bravo Zn (2 Pt/A)	Air
6/13/2011	Bravo Zn (2 Pt/A), Tomstone (1.6 Oz/A), Sable N28 (2 Gal/A)	Air

Trial Protocol:

Refer to Agronomy SOP 6.22 Large Field Trial Sampling for Yield and Fry Quality

Weather, Growing Conditions:

March	Rainfall	6.35"	Soil Cond. Wet	Temp. F.	37 to 68 F av.
April		12.10"	Saturated		48 to 77 F av.
May		7.75"	Wet		52 to 85 F av.
June		3.25"	Hot and Dr	У	74 to 88 F av.

This season was not like any other: Excessive rainfall contributed to rise of water table, flooding, lenticel formation on roots and tubers, leaching of fertilizers that had to be reapplied by plane, poor canopy development that resulted in very poor ground cover, leading utlimately to exessive weed pressure (herbicides wshed off, or too much soil moisture to get a ground rig into the field). Overall, the crop suffered serious stress and did not have the opportunity for full yield potential.

MISSOURI REGIONAL TRIAL

Charleston, Missouri - Black Gold Farms - 2011

Planting Date: 3/17/11

Harvest Date: 7/7/11

		Unde	r Size	Marketa	ble Yield	Over	Total			
	Vine &	1" - 1	7/8"	1 7/8	3" - 4"	> 4"	Yield	% of Sta	andard's	
Variety	Vigor	# of		# of				Marketa	ble Yield	Specific
	Rating	tubers	cwt/ac	tubers	cwt/ac	cwt/ac	cwt/ac	Atlantic	Snowden	Gravity
ATLANTIC	6	39.3	82	65.8	134	0	216	130	89	1.080
SNOWDEN	6	38.8	31	81.5	170	0	201	165	113	1.064
AF0338-17	6	34.8	93	69.5	150	0	243	146	100	1.064
C000188-4W	2	27.0	66	46.8	93	0	159	90	62	1.067
C000197-3W	4	86.5	83	71.8	152	0	235	148	101	1.060
MSL292-A	4	45.8	54	48.5	170	0	224	165	113	1.070
MSQ086	5	54.5	100	28.0	103	0	203	100	69	1.064
ND7519-1	5	36.5	44	41.3	125	0	169	121	83	1.070
ND8305-1	4	30.8	41	43.8	120	0	161	117	80	1.069
ND8331Cb-2	6	53.0	67	22.0	53	0	120	51	35	1.079
NY140	5	39.0	50	78.3	229	0	279	222	153	1.068
W2310-3	7	30.8	32	75.0	150	0	182	146	100	1.076
W2978-3	4	35.3	63	32.0	113	0	176	110	75	1.057
W4980-1	5	37.5	50	62.0	159	0	209	154	106	1.056

Vine & Vigor Rating: 1 = 100 % dead vines

2 = 90% defoliated, 80-90% dead vines 3 = 75% defoliated, 25-50% dead vines

4 = 25% defoliated, 10% dead vines

5 = 0-10% defoliated, yellowing leaves common

6 = Green, no new growth, some lower leaves yellowing.

es 7 = Green, no flowering

8 = Green, vigorous, 0-10% flowering

Harvested Sample: 4 Replications of 25 feet

North Carolina Regional Trial

Local Coordinators:		Cooperating Grower:	Cooperating Chip Processor:
Dr. Craig Yencho North Carolina State Unive 214A Kilgore Hall Raleigh NC, 27695	ersity	Jeff Spruill Black Gold Farms 2815 N Gum Neck Road Columbia, NC 27925	Utz Quality Foods Hanover, PA
Mr. Mark Clough North Carolina State Unive 207 Research Station Rd. Plymouth NC 27962	ersity		
Trial Data:			
Planting Site:	Black Gold Farm	s, Gum Neck, Tyrrell County, NC	
Planting Date:	March 9, 2011		
Harvest Date:	June 20, 2011 (12	10 days)	
Growing Conditions:	Planting was with with adequate mo However, by ear As a result of the	hin the normal time frame. Early season oisture through April. The crop had stror ly May, rains tapered off and conditions se conditions, yield was depressed but ov	temperatures were favorable combined g tops entering into the bulking phase. became hot and dry moving into June. erall internal quality was good.
Soil Type:	Cape Fear silt loa	ım	
Experimental Design:	Randomized com	plete block design with 5 replications.	
Row Spacing:	28 hills, spaced 9	inches apart, 34" row width.	
Fertilizer:	236 N, 119 P, 10	1 K, 1 ZN (lbs/A)	
Weed Control:	Metribuzin 1.3 lb Volunteer 8 fl oz	os/A /A	
Insect Control:	Admire Pro in-fu	rrow 7.2oz/A	
Disease Control:	Quadris in furrov Bravo 6 pt/A Revus Top 6.2 fl	v 6.2/A oz/A	

									_			Chip C	color ³	
	Total Yield	Marketable Yield	%	Size D	istribut	ion by	Class ¹		1 ⁷ /8	$2^{1}/_{2}$	Specific	24 to	5 to	
Clone	cwt/A	cwt/A	1	2	3	4	5	Culls	to 4"	to 4"	Gravity ²	48 hrs	7 days	
AF0338-17	240	172	23	53	19	0	0	5	72	19	1.088	2	2	
Atlantic	245	182	18	53	22	0	0	7	75	22	1.087	2	2	
CO00188-4W	237	140	36	47	11	0	0	5	59	11	1.074	2	2	
CO00197-3W	232	133	38	52	4	0	0	5	56	4	1.081	2	2	
MSL292-A	236	147	28	56	6	0	0	10	62	6	1.086	2	1	
MSQ086-3	219	105	44	46	2	0	0	9	48	2	1.081	2	2	
ND7519-1	161	72	52	43	2	0	0	4	44	2	1.094	2	2	
ND8305-1	118	39	68	28	2	0	0	2	31	2	1.092	1	2	
ND8331Cb-2	62	7	86	9	1	0	0	4	10	1	1.087	2	2	
NY140	236	184	19	57	21	0	0	4	78	21	1.083	2	3	
Snowden	237	147	38	55	5	0	0	2	60	5	1.094	2	2	
W2310-3	210	135	28	59	6	0	0	8	64	6	1.099	2	2	
W2978-3	183	112	37	53	8	0	0	2	61	8	1.075	2	2	
W4980-1	275	190	27	54	15	0	0	4	69	15	1.082	2	2	
Grand Mean	207	126												
CV(%)	12.5	19.0												
LSD(K=100)	29.9	27.7												

Table 1.North Carolina. Total and marketable yield, percentage of total yield by size class, specific gravity and chip scores

Size Classes:

1's < 17/8"; 2's 17/8 to 21/2"; 3's 21/2 to 31/4"; 4's 31/4 to 4"; 5's ≥ 4"; Culls = all defective potatoes.

² Specific Gravity

Determined by weight in air/water method.

³ Chip Color

Ratings conducted by the NCSU Potato Breeding Program at the TRS/VGJREC within 48 hrs and again in 5 to 7 days after harvest: 1 = no defects, exceptionally bright; 2 = excellent, bright; 3 = good, light or golden; 4 = dark defects, marginal; 5 = not acceptable.

Table 2. North Carolina. Pl	lant vine type,	disease and air	pollution scores,	maturity at ca.	3 weeks prior to harvest,	and external
and internal tuber attribute	es.			-	-	

		Plant I	Data ¹					Tub	er Da	ta^2				0/	6 Interi	nal D	efect	s ³		
Clone	TYPE	E DIS	POLL	MAT	CLR	TXT	тсх	TSS	SHP	EYE	SIZE	DIS	APP	HN	HNR	ΗH	VR	BC	SR	
AF0338-17	9	9	9	5	6	7	5	7	3	6	5	7	7	0	9	0	0	0	2	
Atlantic	6	7	8	6	7	6	7	7	3	6	7	8	7	18	7.2	6	0	16	4	
CO00188-4W	8	9	8	6	9	7	5	7	2	6	3	8	6	0	9	0	0	2	0	
CO00197-3W	7	9	9	6	9	7	5	7	2	8	2	8	5	0	9	0	0	0	0	
MSL292-A	7	9	8	6	6	6	5	5	2	2	4	4	4	0	9	0	0	0	0	
MSQ086-3	8	8	8	6	8	9	7	8	2	8	3	6	6	0	9	0	0	0	0	
ND7519-1	9	9	8	7	9	8	5	7	3	8	2	7	4	0	9	6	0	6	0	
ND8305-1	7	9	8	6	8	9	5	7	2	7	1	8	6	0	9	0	0	0	0	
ND8331Cb-2	8	9	8	6	9	6	7	7	2	6	2	8	4	0	9	0	0	0	0	
NY140	7	9	8	5	7	7	5	8	4	8	5	7	7	0	9	0	0	0	0	
Snowden	9	9	8	6	6	6	7	7	2	4	5	7	6	0	9	0	0	0	0	
W2310-3	6	8	9	6	6	6	5	8	3	7	5	6	5	2	8.8	0	0	0	0	
W2978-3	6	8	9	6	8	9	7	7	2	8	5	8	8	0	9	2	0	4	0	
W4980-1	6	9	9	8	5	7	7	5	3	6	7	8	9	2	8.2	0	0	0	0	

¹ Plant Data:

Vine Type: 1 = decumbent – poor canopy, 2 = decumbent – fair canopy, 3 = decumbent – good canopy, 4 = spreading – poor canopy, 5 = spreading – fair canopy, 6 = spreading - good canopy, 7 = upright – poor canopy, 8 = upright – fair canopy, 9 = upright good canopy.

Vine Disease: 1 = very severe, 5 = moderate, 9 = none.

Vine Pollution: 1 = very severe, 5 = moderate, 9 = none.

Vine Maturity: 1= very early, 5 = mid-season, 9 = very late.

² Tuber Data:

Skin Color: 1 = purple, 2 = red, 3 = pink, 4 = dark brown, 5 = brown, 6 = tan to light brown, 7 = buff, 8 = white, 9 = cream.
Skin Texture: 1 = partial russet, 2 = heavy russet, 3 = moderate russet, 4 = light russet, 5 = netted, 6 = slight net, 7 = moderately smooth, 8 = smooth, 9 = very smooth.
Cross Section: 1 = very flat, 3 = flat, 5 = intermediate to oval, 7 = mostly round, 9 = very round.
Skin Set: 1 = very poor, 5 = fair, 9 = excellent.
Shape: 1 = very round, 2 = mostly round, 3 = round to oblong, 4 = mostly oblong, 5 = oblong, 6 = oblong to long, 7 = mostly long, 8 = long, 9 = cylindrical.
Eye Depth: 1 = very deep, 5 = medium, 9 = very shallow.

Size: 1 =small, 5 =medium, 9 =large.

Tuber Disease: 1 = very severe, 5 = moderate, 9 = none.

Overall Appearance: 1 = very poor, 5 = fair, 9 = excellent.

³ Internal Defects:

Percentage determined from 10 randomly selected potatoes /rep (40 total) in size classes 3 and 4. HN=heat necrosis; HNR=average heat necrosis rating (Rating Scale: 1= very severe to 9 = absent); HH=hollow heart; VR=vascular ring discoloration; BC=brown center; SR=soft rot

% De	fects	%Total	Specific		Chip C	olor ²		
Internal	External	Defects	Gravity	Defect Descriptions ¹	Hunter Lab	Agtron		
2%	0%	2%	1.093	ID(Light Cast)	59.2	57.1		
7%	0%	7%	1.103	IHN	62.1	64.1		
1%	0%	1%	1.083	ID(Light Cast)	60.4	59.8		
2%	0%	2%	1.093	SB, ID	60.8	60.4		
0%	0%	0%	1.099	•	62.1	64.1		
5%	0%	5%	1.097	VB, ID	61.0	60.7		
3%	0%	3%	1.108	SB	60.5	59.9		
3%	0%	3%	1.098	SB, VB	60.2	59.5		
7%	0%	7%	1.092	SB, VB	60.3	59.6		
2%	0%	2%	1.095	VB, ID	60.6	60.1		
0%	0%	0%	1.103		61.6	62.5		
1%	0%	1%	1.106	SB	60.3	59.6		
1%	0%	1%	1.082	BC, ID	59.6	58.1		
1%	0%	1%	1.088	SB, ID(Light Cast)	59.7	58.3		
	<u>% De</u> Internal 2% 7% 1% 2% 0% 5% 3% 3% 3% 7% 2% 0% 1% 1% 1%	% Defects Internal External 2% 0% 7% 0% 1% 0% 2% 0% 1% 0% 2% 0% 3% 0% 3% 0% 3% 0% 2% 0% 3% 0% 3% 0% 1% 0% 1% 0% 1% 0%	% Defects % Total Defects Internal External Defects 2% 0% 2% 7% 0% 7% 1% 0% 1% 2% 0% 2% 0% 0% 1% 2% 0% 0% 0% 0% 2% 0% 0% 2% 0% 0% 3% 3% 0% 3% 3% 0% 3% 2% 0% 2% 0% 0% 3% 3% 0% 3% 0% 0% 2% 0% 0% 2% 0% 0% 1% 1% 0% 1%	% Defects % Total Defects Specific Gravity 1nternal External Defects Gravity 2% 0% 2% 1.093 7% 0% 7% 1.103 1% 0% 1% 1.083 2% 0% 2% 1.093 1% 0% 1% 1.083 2% 0% 2% 1.093 0% 0% 2% 1.093 0% 0% 2% 1.093 0% 0% 5% 1.097 3% 0% 3% 1.108 3% 0% 3% 1.092 2% 0% 2% 1.095 0% 0% 1% 1.103 1% 0% 1% 1.082 1% 0% 1% 1.082	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Defect Descriptions:
 BC = Brown Center; BR = Bruising; ED = External Discoloration; HH = Hollow Heart; ID = Internal Discoloration; IHN = Internal Heat Necrosis; SB = Stem End Browning; VB = Vascular Browning; WW = Wire Worm.

² <u>Chip Color:</u> Hunter Lab Scores

Taken with defective chips included in sample

Clone Summaries

AF0338-17: Maturity for this clone was mid-season (though more typically late) and stand counts averaged 96% and vigor was excellent. Shapes were round to oblong, size was medium to large and overall appearance was good. Marketable yields were 97% of Atlantic, gravity was 1.088 and chip color was excellent in the 24 to 48 hour and the 5 to 7 day chip tests. External defects included misshapes, soft rot, Fusarium dry rot and skin blemishes due to Rhizoctonia.

CO00188-4W: Maturity for this clone was mid-season with 99% stands and excellent plant vigor. Shapes were mostly round, size was small to medium and overall appearance was better than fair. Marketable yields were 77% of Atlantic, gravity was 1.074 and chip scores were excellent for both the 24 to 48 hour and 5 to 7 day chip tests. External defects included misshapes, sunscald, growth cracks and common scab.

CO00197-3W: This clone was mid-maturing and had 92% stands with better than good plant vigor. Shapes were mostly round, size was small, and overall appearance was fair. Marketable yields were 72% of Atlantic, gravity was 1.081 and chip scores were excellent for both the 24 to 48 hour and 5 to 7 day chip tests. External defects were sunscald, soft rot, skin blemishes due to Rhizoctonia and misshapes.

MSL292-A: This clone was mid-maturing and had 99% stands with excellent vigor. Shapes were mostly round, size was smaller than medium, and overall appearance was less than fair. Marketable yields were 82% of Atlantic, gravity was 1.086, and chip scores were excellent for the 24 to 48 hour test and exceptional for the 5 to 7 day test. External defects included misshapes, soft rot, deep apical and stem ends, common scab and sunscald.

MSQ086-3: This clone was mid-maturing and had stands of 96% with good vigor. Shapes were mostly round, size was small to medium, and overall appearance was better than fair. Marketable yields were 59% of Atlantic, gravity was 1.081, and chip scores were excellent for both the 24 to 48 hour and 5 to 7 day chip tests. External defects included high amounts of common scab, high amounts of skin blemishes due to Rhizoctonia, soft rot and sunscald.

ND7519-1: This mid to late maturing clone had stands of 84% with better than fair plant vigor. Shapes were round to oblong, size was small, and overall appearance was less than fair. Marketable yields were 40% of Atlantic, gravity was 1.094, chip scores were excellent for both the 24 to 48 hour and 5 to 7 day chip tests. External defects included sunscald, skin blemishes due to Rhizoctonia and misshapes.

ND8305-1: Maturity for this clone was mid-season, stands were 85% and vigor was better than fair. Shapes were mostly round, size was very small, and overall appearance was better than fair. Marketable yields were 22% of Atlantic, gravity was 1.092, chip scores were exceptional for the 24 to 48 hour test and excellent for the 5 to 7 day test. External defects included sunscald, soft rot and misshapes.

ND8331Cb-2: This clone was mid-maturing, and stands were 94% with good vigor. Shapes were mostly round, size was small and overall appearance was less than fair. Marketable yields were 4% of Atlantic, gravity was 1.087, and chip scores were excellent for both the 24 to 48 hour and 5 to 7 day chip tests. External defects included tight stem attachments, sunscald, and skin blemishes due to Rhizoctonia.

NY140: This clone had stands of 98%, and was mid-maturing (though more typically mid to late) with excellent vigor. Shapes were mostly oblong, size was medium and overall appearance was good. Marketable yields were 103% Atlantic, gravity was 1.083, and chip scores were excellent in the 24 to 48 hour and good in the 5 to 7 day test. External defects included soft rot, misshapes, and sunscald. Overall, this clone was one of the best clones in the trial.

W2310-3: This clone was mid-maturing with 97% stands and better than good vigor. Shapes were round to oblong, medium size, and fair for overall appearance. Marketable yields were 74% of Atlantic, gravity was 1.099, and chip scores were excellent in both the 24 to 48 hour and 5 to 7 day tests. External defects included high amounts of skin blemishes due to Rhizoctonia, soft rot, common scab and sunscald.

W2978-3: Maturity for this clone was mid-season, and had 93% stands with better than fair vigor. Shapes were mostly round, size was medium and overall appearance was better than good. Marketable yields were 62% of Atlantic, specific gravity was 1.075, and chip scores were excellent for both the 24 to 48 hour and 5 to 7 day tests. External defects included sunscald, misshapes, common scab and soft rot.

W4980-1: Maturity for this clone was late and stands were 96% with excellent vigor. Shapes were round to oblong, size was medium to large, and overall appearance was excellent. Marketable yields were 106% of Atlantic, gravity was 1.082, and chip scores were excellent for both the 24 to 48 hour and 5 to 7 day tests. External defects included sunscald, common scab, skin blemishes due to Rhizoctonia and soft rot. Overall, this clone was one of the best clones in the trial.

NORTH DAKOTA REGIONAL LOCATION

Local Coordinators:	Cooperating Grower:	Cooperating Chip Processor:
Mr. Martin Glynn Food Technologist USDA, ARS Potato Research Worksite East Grand Forks, Mn 56721	Oberg Farms Hoople, ND	USDA, ARS Potato Research Worksite East Grand Forks, MN 56721
Trial Data:		
Planting Site:	Oberg Farms, Hoople, ND	
Planting Date:	June 9, 2011	
Harvest Date:	September 19, 2011 (103 days)	
Growing Conditions:	Overall, weather conditions in the region for the Poor. A very wet cool spring delayed planting Temperatures in June were cool and condition From August through harvest we had hot dry of below average to fair for most clones, and tub	ne 2011 growing season were and also delayed emergence. Ins did not improve until in July. conditions Total yields were ers in general were under sized.
Experimental Design:	Each variety/clone was planted in a single 250 protocol. Four 20 ft sections of each row were was not a randomized and replicated experime calculated.) ft row as directed by the SFA e harvested and graded. This ent. Only means were
Row Spacing:	Machine planted. Approx. 12 inches in-row, 3	6 inches between-rows.
Fertilizer:	Awaiting data	
Pest Control:	Awaiting data	
Chip Ratings:	Chips were prepared and rated following the p in the Snack Food Association Chipping Potat Chips were prepared and fried on 1/20 size ch Research Worksite, East Grand Forks, MN .56 in Table 2.	procedures outlined o Handbook (1995). hip line at USDA, ARS Potato 5721 Chip scores are presented

Table 1. Production statistics for SFA clones.

Table 1. Producti	on statistic:	s for SFA c	lones									
	US #1 YId	Total Yld	5 #1 `	Culls	9	Size C	lass Di	stribut	ion (%)	Size Cla	ss Range	Specific
Clone	cwt/A	cwt/A	%	%	1	2	3	4	5	2 to 4	3 to 4	Gravity
Atlantic	145	220.4	66	0.0	30	52	7	6	0	66	13	1.095
CO 00188-4W	106	151.5	70	0.0	14	39	27	5	14	70	32	1.087
CO 00197-3W	115	168.2	68	0.0	15	40	16	12	13	68	28	1.910
CV 97065-1	125	177.2	71	4.8	12	48	17	9	13	71	25	1.089
MSJ 126-9Y	164	260.9	63	0.0	20	41	15	7	12	63	21	1.078
MSL 292-A	226	316.6	72	0.0	20	44	15	12	5	72	28	1.082
MSR 061-1	238	356.7	67	0.3	18	45	9	12	11	67	22	1.089
ND 7519-1	115	177.8	64	0.0	23	46	15	3	7	64	19	1.089
ND 8305-1	125	207.7	60	2.8	12	32	19	11	24	60	29	1.098
ND8331CB-2	230	338.6	68	0.0	24	48	15	5	2	68	20	1.086
NY 140	202	346.1	58	0.0	33	51	6	1	1	58	7	1.084
Snowden	278	391.2	71	0.0	18	45	16	10	7	71	26	1.089
Starburst	175	328.8	53	0.0	39	46	5	2	0	53	7	1.087
W 2310-3	80	113.7	70	0.0	24	45	20	5	2	70	25	1.092
W2978-3	216	323.0	67	1.7	8	39	14	15	22	67	29	1.088
W 4980-1	76	114.3	66	0.0	17	45	14	7	14	66	21	1.092
W 5015-12	144	229.3	63	0.0	11	35	15	13	24	63	28	1.078
1No.1 Yield: marl	<mark>k</mark> etable yiel	d, size clas	ses 2	2 to 4								
2Percent No. 1:	1: calculated based on weight using the formula, No. 1 Wt / Total Yield Wt											
3Size Class Dist	Distribution: calculated based on weight using the formula, Class Wt / (Total Yield Wt – Cull Wt).											
4Size Classes: 1	lasses: 1 = 1.5 to 1 7/8", 2 = 1 7/8 to 2.5", 3 = 2.5 to 3.25", 4 = 3.25 to 4", 5 = > 4"; Class size C (<1.5")								.5") was			
recorded and is in	ncluded in Total Yield but is not shown as a separate size category.											

 Table 2. Plant growth and tuber characteristics for SFA clones.

-											
	Plant	Growth	Characte	ristics ¹			Tuber	Characte	eristics ²		
	Percent	Early	Vine	Vine							Chip
Clone	Stand	Vigor	Туре	Maturity	IFC	SC	ST	TS	ED	APP	Rating ³
Atlantic	83	na	9	3	2	6	6	3	7	7	71
CO 00188-4W	72	na	8	3	1	6	5	3	5	7	73
CO 00197-3W	82	na	6	3	2	6	5	3	5	7	75
Cv 97065-1	73	na	8	5	1	6	5	3	5	7	74
MSJ 126-9Y	83	na	1	3	3	6	6	4	5	8	72
MSL292-A	89	na	8	3	1	6	5	3	5	6	74
MSR 061-1	87	na	8	4	1	6	6	3	5	7	74
ND 7519-1	90	na	8	5	1	6	6	3	5	7	76
ND 8305-1	78	na	8	4	2	6	6	4	5	7	75
ND 8331cb-2	57	na	8	7	1	6	6	4	7	7	79
NY 140	na	na	6	8	1	6	5	3	7	8	75
SNOWDEN	76	na	9	7	1	6	5	4	6	7	75
STARBURST	67	na	8	5	1	6	6	4	6	5	75
W 2310-3	76	na	8	5	2	6	5	5	3	7	74
W 2978-3	75	na	8	3	1	6	5	4	4	6	75
W 4980-1	80	na	8	3	1	6	5	4	4	6	74
W 5015-12	85	na	8	4	1	6	5	3	4	7	74

¹Plant Growth Characteristics.

Percent Stand: based on machine planted 12 inch in-row spacing, 20 ft plot.

Early Vigor: 1 = no emergence, 2 = leaves in rosette, 3 = plants < 2 in., 4 = plants 2 to 4 in., 5 = plants 4 to 6 in., 6 = plants 6 to 8 in., 7 = plants 8 to 10 in., 8 = plants 10 to 12 in., 9 = plants > 12 inches.

Vine Type: 1 = decumbent - poor canopy, 2 = decumbent - fair canopy, 3 = decumbent - good canopy, 4 = spreading - poor canopy, 5 = spreading - fair canopy, 6 = spreading - good canopy, 7 = upright - poor canopy, 8 = upright - fair canopy, 9 = upright - good canopy.

Vine Maturity: 1 = completely dead, 3 = yellow and dying, 5 = moderately senesced, 7 = starting to senesce, 9 = green and vigorous.

²Tuber Characteristics.

Internal Flesh Color (IFC): 1 = white, 2 = cream, 3 = light yellow, 4 = medium yellow, 5 = dark yellow, 6 = pink, 7 = red, 8 = blue, 9 = purple.

Skin Color (SC): 1 = purple, 2 = red, 3 = pink, 4 = dark brown, 5 = brown, 6 = tan, 7 = buff, 8 = white, 9 = cream.

Skin Texture (ST): 1 = partially russet, 2 = heavy russet, 3 = moderate russet, 4 = light russet, 5 = netted, 6 = slightly netted, 7 = moderately smooth, 8 = smooth, 9 = very smooth.

Eye Depth (ED): 1 = very deep, 3 = deep, 5 = intermediate,7 = shallow, 9 = very shallow

Overall Appearance (APP): 1 = very poor, 3 = poor, 5 = fair, 7 = good, 9 = excellent.

³Chip Rating: Chips were prepared and rated following the procedures outlined in the Snack Food Association Chipping Potato Handbook (1995). A sub-sample of potatoes from the trial was shipped to Utz Quality Snacks, chipped and scored according to the Hunter Lab rating.

Table 3. External and internal defects for SFA clones.

		% Exter	nal Tuber	% Internal Tuber Defects ²					
	Growth	Mis-	Sun-	Rotten	Total				
Clone	Cracks	Shapen	Burned	& misc.	Culls	НН	BR	CRS	IHN
Atlantic	0	0	3	0	5	1	0	0	0
CO 00188-4W	0	0	0	2	4	0	0	0	0
CO 00197-3W	0	0	2	3	6	0	0	0	0
CO00188-4W	0	0	4	3	9	0	0	0	0
CV 97065-1	0	3	6	1	10	 0	0	0	0
MSJ 126-9Y	0	0	3	1	5	0	0	0	0
MSL 292-A	3	1	2	4	8	0	0	0	0
MSR 061-1	0	0	4/	1	6	0	0	0	0
ND7519-1	1	3	3	3	10	0	0	0	0
ND8305-1	0	1	2	2	6	0	0	0	0
ND8331cb-2	0	2	3	2	7	0	0	0	0
NY 140	0	1	4	2	6	 0	0	0	0
SNOWDEN	0	0	1	1	3	0	0	0	0
STARBUST	1	0	5	3	9	0	0	0	0
W 2310-3	0	0	3	2	6	0	0	0	0
W 2978-3	0	0	6	4	11	0	0	0	0
W 4980-1	0	4	2	1	8	0	0	0	0
W 5015-12	0	2	4	2	8	0	0	0	0

External Tuber Defects: Total Culls is sum of growth cracks, misshapen, sunburned and rotten/miscellaneous. 2Percent Internal Tuber Defects: percent of tubers showing defects; HH = hollow heart, BR = brown rot, CRS = corky ringspot, IHN = internal heat necrosis.

Snack Food Association Chip Variety Trial

Oregon Trial Cooperators Phil Hamm, Laurie Leroux, Fahrettin Goktepe Oregon State University Hermiston Agricultural Research and Extension Center Hermiston, Oregon

April 22, 2011
September 21, 2011
October 17, 2011
9.25" seed spacing in 34" beds
Single row spacing of 24 hills in four randomized blocks
2506.3

This trial was to evaluate fifteen advanced cultivars and two control varieties in the Snack Food Association Trial for their chip processing qualities. This trial was grown for 152 days, providing evaluation of the cultivars under long season, late harvest conditions. The seed was cut by hand and planted on April 22nd. The vines were killed on September 21st and the plots were mechanically harvested on October 17th. The plots were grown in fine sandy loam soil following a small grains crop the previous year. The trial area was fumigated in September 2010 with 41 gallons per acre of Vapam with .6 inches of water. A pre-plant application of 57 pounds of nitrogen, 200 lbs of K2O, 30 pounds of sulfur, 10 pounds of Zinc and 1.5 pounds of Boron was made. Dry fertilizer was banded at planting with 60 pounds nitrogen, 80 pounds of P2O5, and 40 pounds of sulfur per acre at planting. An addition 270 pounds of slow release nitrogen was top dressed on May 20th. The trial was irrigated by central pivot irrigation. The trial received management inputs normal for this area as indicated for insecticides and a weekly fungicide application was made. The harvest area was one row of 24 hills replicated four times for each cultivar. Plants were spaced at 9.25" in 34 inch rows.

The overall yields in this trial ranged from 566 cwt/acre for the Colorado cultivar CO00188-4W to 1,307 cwt/acre for the New York cultivar NY140 (Table 1). US #1 yields ranged from a low of 444 cwt/acre for CO00188-4W to 822 cwt/acre for the cultivar W5015-2. Specific gravities ranged from 1.068 for W2978-3 to 1.089 for ND8305-1. Processing color evaluation was conducted four days after harvest. Fourteen cultivars fried at an acceptable SFA color index of 1 to 2. Three cultivars had SFA color indexes above the acceptable range. W5015-12 had an index of 2.8, MN99380-1 had 3.3 index color and E106-4 had the highest index color of 5.0 (Table 1). It is important to note that vascular discoloration and the chip color may have been influenced by Zebra Chip, which was found for the first time this summer in the Columbia Basin. The disease pressure was high. Because of the occurrence of that disease, three separate ratings of the tubers were done. Rating 1 included 20 tubers from each replication from each

cultivar. Each tuber was cut lengthwise and any vascular discoloration was considered possible Zebra Chip, but hollow heart, brown center and IBS were rated separately. Information from Rating 1 was used to provide information for Table 4. Rating 2 involved 20 tubers from replication 1 and 2 from each cultivar. These were cut in half widthwise. Tubers without visual symptoms of any kind were selected for frying. SFA index color was made on those chips not expressing the Zebra Chip symptoms following frying. Rating 3 included tubers only from replication 4 from each cultivar. Twenty tubers were cut from each cultivar. A single tuber with the most extreme internal discoloration was selected along with a single tuber with the least internal discoloration and fried. Combine results from Ratings 2 and 3 are presented in Table 6. Several cultivars indicated reduced or no issues from frying, suggesting they may not have been infected by Zebra Chip or the disease did not impact fry color. Sampling tubers from Rep 3, currently in storage, using PCR analysis, might provide additional and valuable information to confirm Zebra Chip infection or not, and how that relates to fry color. The results from Rating 2 and 3 may suggest possible Zebra Chip resistance/tolerance and further field/lab testing is warranted.

External tuber characteristics are listed in Table 2. The most serious external defect that was present in all the cultivars was shatter bruise. All of the cultivars had shatter bruising to some extent. The most serious shatter bruising was observed in ND8305-1, W4980-1 and MSJ126-9Y. The high incidence of shatter bruising is also be a symptom of Zebra Chip infection, as seen in other trials at this station this past season. Some tubers with deep severe shatter bruising had already started to rot within 24 hours after harvest and was also noted 4 days later during chip frying.

Table 3 lists plant characteristics. One cultivar had poor emergence and stand percentage. ND7519-1 had a 45 days emergence of 41% and a final stand percentage of 81%, the lowest of all cultivars. MSR061-1 had the lowest tubers per plant rating of 8.1, and W5015-12 had the highest of 15.5 tubers per plant. ND8331Cb-2 had the smallest average tuber size of 4.5 ounces and NY140 had the largest average tuber size of 12.4 ounces.

Internal defects ratings were evaluated from 20 tubers in the largest size category from each of the four replications per cultivar, cut lengthwise. Internal defects were high, much of which was likely due to the Zebra Chip, listed as vascular discoloration (Table 4). Actual symptoms caused by Zebra Chip was less since the results from frying, in some cultivars, resulted in normal chip fry color when the expected results from infected tubers would have been unacceptable. Also the long growing season resulted in large tubers for the variety Atlantic where 25% hollow heart was observed. Internal brown spot was highest in ND7519-1 at 20%. Black spot bruise was notable in MN99380-1 at 12.5%.

Tuber percentage and average size (ounces) per grade category are displayed in Table 5. The table lists the percentage of tubers by count in each grade category. ND8331Cb-2 had the largest count of tubers by percentage in the undersize category of 41%. Several cultivars Including Snowden, ND8305-1, W4980-1, MSR061-1 and W5015-12

had around half of the tubers by count in the medium category with the average tuber weight of around 5.5 ounces. Atlantic had the largest count percentage in the large category of 42.9%. The long growing season may have resulted in the more tubers in the oversize category, with the highest amount of tubers by count size in oversize category for cultivar NY140 of 34.5% of the tubers in this grade and an average tuber size of 19.8 ounces.

Cultivar Comments

<u>Atlantic</u> This variety was one of the control varieties in SFA trial. It had the second highest yield out of the seventeen cultivars in the trial. It also had the second highest yield in oversize tubers. It has a second largest average tuber size of 8.9 ounces. Atlantic had the second highest specific gravity of 1.087 and had an acceptable SFA chip index color of 1.8. It had the most notable amount of hollow heart at 25% and internal brown spot was at 10%. Combined vascular discoloration it had a total of 73.8% of the tubers with internal defects, the highest in the trial. The Atlantic tubers were overall too large, with some greening and a few knobs.

<u>Snowden</u> This variety was also planted as a control variety. It had a high yield, specific gravity of 1.079 and a good SFA chip index color of 1.5. It looked good in this trial, with minimal internal defects except for vascular discoloration of 31.3%, likely due to Zebra Chip. The tubers were nice, round with good shape and some tuber greening.

<u>CO00188-4W</u> This Colorado cultivar had the smallest yield of the seventeen in the trial of 566 cwt/acre and the fourth highest percent of US#1, 79%, but still the smallest US#1 yield of 444 cwt/acre. It had a good SFA chip index color of 1.3 and had somewhat severe shatter bruise rating of 3.3. The tubers had a nice shape but were small and flattish. The most remarkable attribute of the cultivar was the low yield. Vascular discoloration, or Zebra Chip, was the second lowest of the trial with only 13.8% of the tubers with this defect and little fry color issues.

<u>CO00197-3W</u> This cultivar out of Colorado had the fourth lowest yield in this trial. It had moderate shatter bruising rating of 3.9 and somewhat low gravity of 1.072. Visual Zebra Chip symptoms as vascular discoloration was high at 42.5%. It had the second lowest percent of US#1 at 70%. The remarks during grading were flat, pointy, knobs and some green tubers.

<u>MSL292-A</u> The tuber shape for this cultivar was extremely compact, making it the shortest widest tuber of the bunch. The eye depth was deep with a rating of 3.0 and a low shape uniformity rating of 3.4. The tubers had attached stems and some of the tubers that were not compact, were oblong and flattish. These attributes made it the least desirable in appearance and difficult to process. The specific gravity was low at 1.072 and the yield was good with 639 cwt/acre for US#1. The internals defects were low, except for vascular discoloration of 40%.

<u>ND7519-1</u> ND7519-1 had the lowest emergence rating at only 41% of the tubers emerging at 45 days. The stand was also the lowest at 81% of the tubers planted. This stand rating affected the overall yield, making the total yield 788 cwt/acre and US#1

yield of 559 cwt/acre. The external attributes were acceptable with the lowest characteristic being shatter bruise with a rating of 4.1. This cultivar fried somewhat dark with a SFA chip color rating of 2.0,but was still an acceptable color. ND7519-1 had internal brown spot in 20% of the tubers, making it the highest in the trial. The tubers had a nice round shape, some were a little flat. There were a large percentage of tubers by count in the undersize category (31.1%).

<u>ND8305-1</u> This cultivar was in the middle of the pack with a total yield of 763 cwt/acre. The specific gravity was the highest of the cultivars at 1.089, and the worst shatter bruise rating of 1.4. The shatter bruising was so deep and severe on the bud end of the tubers that the tubers were beginning to rot with 24 hours of harvest. The cultivar also had poor shape uniformity (3.5 rating) with green and misshapen tubers. The internal defects included internal brown spot at 11.3% and vascular discoloration of 38.8%

<u>ND8331Cb-2</u> ND8331Cb-2 had the nicest tubers with good color and shape. It also had the largest amount of undersize tubers by weight (172 cwt/acre) and by count (44.1%). Overall US#1 was the second lowest at 512 cwt/acre. The internal defects were the fourth lowest with total internal defects 31.3%. Shatter bruise for this cultivar was rated at 3.8 and the SFA chip color index was acceptable at 1.8. Tuber size is the most notable negative characteristic of this cultivar. Even with the long, late season harvest, this cultivar had too many undersize tubers. Fry issues due to possible Zebra Chip were low.

<u>NY140</u> The largest yield (1,307 cwt/acre) was from NY140, but after subtracting oversize tubers from the US#1 yield, it ranked the third lowest in US#1 yield with 518 cwt/acre. It had 710 cwt/acre of oversize tubers and 34.5% by count of oversized, likely the result of the long growing season. This cultivar may be best suited for an early, short season harvest. The external defect most notable was deep eyes (3.5 rating) but it had had the second lowest shatter bruise rating of 4.5. Large tubers produced an average tubers size of 12.4 ounces, the largest in trial.

<u>W2310-3</u> This cultivar also had large tubers. Harvest notes indicated that the tubers were large flat and misshapen, with a few knobs, giving it a shape uniformity rating of 3.5. The total yield was good with 817 cwt/acre with 83% falling into the US#1 grade category. The chips fried with an excellent SFA chip color index of 1.3. Specific gravity was below average at 1.074.

<u>W2978-3</u> Specific gravity for this cultivar was the lowest of the seventeen cultivars at 1.068. The shape uniformity was very good with a rating of 4.8. The harvest notes reflect this value with remarks for each plot indicating good shape, size and color. The chips fried at a SFA chip color index of 1.5. US#1 yield was below average with 552 cwt/acre. Vascular discoloration was high at 43.8% of the tubers exhibiting this defect.

<u>W4980-1</u> SFA chip color index was 1.0 for the cultivar, of which only two cultivars in the trial achieved. Shatter bruising was severe in this cultivar with a rating of 2.3 and with bud end shatter bruising starting to rot soon after harvest. Internal defects included hollow heart (1.3%), brown center (3.8%), internal brown spot (11.3%) and a high vascular discoloration percentage of 55% for a total of 73.8% total internals, tied with

Atlantic for the worst percentage in the trial. Specific gravity was below average at 1.073.

<u>MN99380-1</u> This cultivar had the sixth highest total yield of 917 cwt/acre and the fifth highest US#1 yield of 712 cwt/acre. Specific gravity was below average at 1.074. This cultivar was one of three with an unacceptable SFA chip fry color of 3.3. The lowest skin set rating was noted for this cultivar at a rating of 3.4 and it also had the lowest growth crack rating of 3.9. Black spot bruising was at 12.5%, the highest of any cultivar. Notes at grading included protruding eyes, knobs, attached stems and flattish tubers, giving it highest percent (9.3%) of tubers by count in the culls category.

<u>MSJ126-9Y</u> Low tuber set was most notable of this cultivar, with an average of 8.1 tubers per plant, the lowest of all the cultivars. Despite the low tubers set, the yield was not the lowest in the trial. It had a total yield of 729 cwt/acre and a US#1 yield of 563 cwt/acre putting it in the middle of the pack for yield. The specific gravity was below average at 1.073, but it had a good SFA chip color rating of 1.3. This cultivar had 60% of the tubers with the internal defect of vascular discoloration. External rating included a shape uniformity rating of 4.1and an eye depth rating of 4.0. The shatter bruise rating of 2.3 was the second lowest for the trial. The tuber flesh was light yellow in color. Tuber distribution was good with 75.4% of the tubers in the medium and large range. Grading notes indicted some tubers with deep eyes, some with nice shape, and flat and misshapen tubers.

<u>MSR061-1</u> This cultivar had a total yield of 859 cwt/acre and an above average US#1 yield of 688 cwt/acre, slightly above average. Specific gravity was above average at 1.079. It had a good SFA chip index color of 1.5. It had a lot of undersized tubers with 125 cwt/acre and 29.4% by count, with 48% of tubers by count in the medium category. Vascular discoloration was high at 41.3%. External tuber characteristic were among the best, with shatter bruise the only notable defect with a rating of 3.8. Grading notes indicate this cultivar to be the best looking with the best external characteristics of the bunch, with notes on the large amount of undersize and a few knobs.

<u>E106-1(NY148)</u> E106-1 was the most unique of the cultivars in terms of Zebra Chip and vascular discoloration. The internal defect table shows this cultivar to have the best rating in terms of percentage of vascular discoloration at 11.3%, the lowest of the entries. SFA chip color index for this cultivar was however a 5.0, the most unacceptable reading of all the cultivars. The tubers did not exhibit translucent end or jelly tuber, during cutting, an indication of sugar formation, but the chips fried very dark, a very uniform darkness on all of the chips. The cause of the chip darkening it undeterminable within our testing parameters, but is likely due to Zebra Chip. This may indicate that Zebra Chip symptom is not easily seen in raw tubers. Further glucose and ELISA testing may point to the cause of the chip darkening. The total yield was third highest for the trial at 1,054 cwt/acre and a US#1 yield of 806 cwt/acre. Specific gravity was below average at 1.074. External tuber characteristics worth noting are shape uniformity rating of 4.0 and a relatively good shatter bruise rating of 4.1. Total internal defects were the lowest of all the entries at 13.8%. Notes indicate the tubers were flat and lumpy in appearance. <u>W5015-12</u> W5015-12 is a high yielding cultivar with the fifth highest total yield of 1,005 cwt/acre and the highest US#1 yield of 822cwt/acre, a percentage of 82%. It had an unacceptable SFA chip index color of 2.8, which may be due to Zebra Chip. The level of vascular discoloration at grading was 56.3% of the tubers. This cultivar had the most russetting of all the entries, and some tubers had a coarse russet. The skin color was buff to light brown. It had an above average specific gravity of 1.084. Tuber size distribution shows 25% of the tubers by count in the undersize category and 58.4% in the medium size category, the highest percentage of all entries. Harvest notes include pink around the eyes on the tubers, the tubers were a little flat and that they had attached stems.

Growing Season Weather Conditions

The growing season temperatures for the period between 4/22/2011, planting date, and the vine kill date of 9/21/11 were cooler than average. The growing degree days for this period in 2011 was 2506.3 and the average of the previous five years (2006-2010) was 2704.9, nearly 200 GDD less than the average. The average GDD for the period was 16.3 and the average for the previous five years was 17.7. The maximum temperature in 2011 was 97 degrees compared to the five year average of 104.8 degrees (data compiled from the IRZ Consulting website weather report for Hermiston, OR). There was 2.01 inches of rain during this period combined with approximately 30" of irrigation water for a total of 32" for the growing period.

Other Notes

A sample from each plot, for a total of approximately 40 pounds of each entry, was sent to a commercial storage shed for a six month storage period and will then be sent to a commercial processor for frying. Results will be available next spring.

Selection	Total Yield	US No. # Yield <	% US #1	Oversize >4 in. diam.	Large 3-4" diam. cwt/acre	Medium 1 7/8"-3" diam.	Culls	Undersize < 1 7/8" diam.	Specific Gravity	SFA Color
Atlantic	1265	804	64	356	597	207	69	36	1.087	1.8
Snowden	1047	776	74	151	415	362	39	81	1.079	1.5
CO00188-4W	566	444	79	12	102	342	7	101	1.071	1.3
CO00197-3W	752	528	70	59	245	283	59	106	1.072	1.0
MSL292-A	849	639	75	82	311	327	43	84	1.077	1.8
ND7519-1	788	559	71	91	218	342	23	114	1.078	2.0
ND8305-1	763	561	74	9	156	404	60	133	1.089	1.8
ND8331Cb-2	725	512	71	4	140	372	37	172	1.085	1.8
NY140	1307	518	40	710	434	84	70	9	1.072	2.0
W2310-3	817	676	83	37	410	266	60	43	1.074	1.3
W2978-3	736	552	75	56	262	290	34	95	1.068	1.5
W4980-1	723	560	78	37	205	355	36	90	1.073	1.0
MN99380-1	941	712	76	84	396	316	62	83	1.074	3.3
MSJ126-9Y	729	563	77	104	350	214	26	36	1.073	1.3
MSR061-1	859	688	80	25	264	425	20	125	1.079	1.5
E106-4 (NY148)	1054	806	77	162	505	302	39	47	1.074	5.0
W5015-12	1005	822	82	16	194	628	48	119	1.084	2.8
Mean	878	631	73	117	306	325	43	87	1.077	1.9

Table 1 - Yield, grade, specific gravity and SFA chip color.

Table 2- External Tuber Characteristics.

Selection Name	9	Skin color*	Russet	Eye Depth	Skin Set	Shape Uniformity	Scab	Growth Cracks	Shatter Bruise
			1-5=heavy	1-5=shallow	1-5=best	1-5=best	1-5=none	1-5=none	1-5=none
Atlantic		1.3	1.6	5.0	4.6	5.0	5.0	4.9	4.1
Snowden		1.0	1.1	4.3	5.0	4.4	5.0	5.0	4.6
CO00188-4W		1.0	1.0	4.8	5.0	4.6	5.0	5.0	3.3
CO00197-3W		1.0	1.0	5.0	4.6	4.3	5.0	5.0	3.9
MSL292-A		1.0	1.5	3.0	4.8	3.4	5.0	5.0	4.6
ND7519-1		1.0	1.3	4.6	4.9	4.5	5.0	5.0	4.1
ND8305-1		1.0	1.0	4.3	4.9	3.5	5.0	4.8	1.4
ND8331Cb-2		1.0	1.0	4.5	4.8	4.5	5.0	4.4	3.8
NY140		1.0	1.0	3.5	4.0	4.5	5.0	5.0	4.4
W2310-3		1.0	1.5	4.8	4.0	3.5	5.0	4.6	4.0
W2978-3		1.0	1.0	5.0	4.6	4.8	5.0	4.1	3.4
W4980-1		1.6	1.9	4.6	4.8	4.8	4.8	5.0	2.3
MN99380-1		1.1	1.0	4.9	3.4	4.3	5.0	3.9	3.6
MSJ126-9Y		1.5	1.4	4.0	4.5	4.1	5.0	4.8	2.3
MSR061-1		1.8	1.4	5.0	5.0	5.0	4.9	5.0	3.8
E106-4 (NY148	8)	1.1	1.0	4.8	4.3	4.0	5.0	5.0	4.1
W5015-12		2.0	2.4	5.0	4.8	4.8	5.0	4.9	4.1
	Mean	1.2	1.3	4.5	4.6	4.3	5.0	4.8	3.6

* 1=white, 2=buff, 3=light brown, 4=brown, 5= dark brown

						Average
Selection		45 day Emergence	60 day Stand	Stems/ Plant	Tubers/ Plant	Tuber Size
		<%	>			(oz.)
Atlantic		84.4	100.0	2.6	11.4	8.9
Snowden		95.8	100.0	2.9	12.8	6.5
CO00188-4W		86.5	96.9	2.8	9.4	5.0
CO00197-3W		70.8	96.9	2.6	11.4	5.4
MSL292-A		81.3	99.0	2.2	10.8	6.4
ND7519-1		40.6	81.3	2.7	14.0	5.6
ND8305-1		82.3	97.9	2.5	12.8	4.9
ND8331Cb-2		87.5	99.0	2.6	13.2	4.5
NY140		83.3	94.8	2.1	9.0	12.4
W2310-3		82.3	100.0	3.1	9.1	7.2
W2978-3		89.6	100.0	2.8	9.7	6.1
W4980-1		86.5	100.0	2.4	10.1	5.7
MN99380-1		87.5	100.0	2.8	12.7	6.1
MSJ126-9Y		77.1	94.8	1.9	8.1	7.6
MSR061-1		80.2	95.8	2.9	13.1	5.5
E106-4 (NY148)		77.1	100.0	2.5	10.8	7.8
W5015-12		88.5	100.0	3.1	15.5	5.2
	Mean	81.2	97.4	2.6	11.4	6.5

Table 3 - Field emergence, stand, stem count, tubers per plant and average tuber size.

Selection	Hollow Heart	Brown center	Internal Brown Spot %	Black Spot Bruise	Vascular Discolor- ation	Internal Defect Totals
Atlantic	25.0	0.0	10.0	6.3	32.5	73.8
Snowden	5.0	1.3	1.3	0.0	31.3	38.8
CO00188-4W	0.0	0.0	0.0	1.3	13.8	15.0
CO00197-3W	0.0	0.0	2.5	0.0	42.5	45.0
MSL292-A	0.0	0.0	3.8	0.0	40.0	43.8
ND7519-1	5.0	1.3	20.0	6.3	22.5	55.0
ND8305-1	0.0	0.0	11.3	1.3	38.8	51.3
ND8331Cb-2	0.0	1.3	2.5	2.5	25.0	31.3
NY140	0.0	0.0	1.3	0.0	25.0	27.5
W2310-3	0.0	0.0	0.0	5.0	20.0	25.0
W2978-3	0.0	0.0	2.5	2.5	43.8	48.8
W4980-1	1.3	3.8	11.3	2.5	55.0	73.8
MN99380-1	0.0	0.0	5.0	12.5	28.8	46.3
MSJ126-9Y	0.0	0.0	2.5	0.0	60.0	62.5
MSR061-1	0.0	0.0	0.0	0.0	41.3	41.3
E106-4 (NY148)	0.0	0.0	0.0	2.5	11.3	13.8
W5015-12	0.0	0.0	2.5	1.3	56.3	60.0
Mean	2.1	0.4	4.5	2.6	34.6	44.3

Table 4 - Internal Tuber defects.

Selection	Unde	rsize	Cul	ls	Med 1 7/8 dia	ium "-3" m.	Lar 3-4" c	ge liam.	Oversi	ze >4"
	oz.	%	oz.	%	oz.	%	oz.	%	oz.	%
Atlantic	2.6	10.4	6.4	7.1	5.8	25.3	9.8	42.9	18.0	14.3
Snowden	2.5	19.6	5.0	4.9	5.5	41.9	9.6	26.8	14.6	6.7
CO00188-4W	2.8	31.5	5.4	1.4	5.4	55.7	9.2	10.4	13.5	0.9
CO00197-3W	2.5	31.8	5.3	7.7	5.3	38.2	8.9	20.0	19.1	2.3
MSL292-A	2.5	24.6	5.7	4.9	5.6	43.4	10.3	23.1	17.8	3.9
ND7519-1	2.5	31.6	4.6	3.7	5.5	45.0	9.6	16.8	17.0	3.0
ND8305-1	2.8	31.1	4.4	8.8	5.3	49.4	9.5	10.3	14.8	0.4
ND8331Cb-2	2.4	44.1	5.2	4.0	5.4	42.5	9.4	9.3	17.2	0.2
NY140	2.3	3.8	6.6	9.0	5.4	15.1	10.8	37.6	19.8	34.5
W2310-3	2.6	14.8	7.3	7.0	5.8	40.5	10.2	35.6	16.5	2.1
W2978-3	2.7	28.7	7.1	4.0	5.6	42.9	10.3	21.5	16.1	2.9
W4980-1	2.5	28.4	5.4	5.1	5.8	48.9	10.0	16.0	20.4	1.8
MN99380-1	2.6	20.8	5.4	9.3	5.1	40.7	9.8	26.3	16.2	3.0
MSJ126-9Y	2.6	14.3	6.9	4.1	6.0	37.0	9.4	38.4	17.0	6.2
MSR061-1	2.7	29.4	4.5	2.8	5.7	48.0	9.1	18.8	16.9	1.0
E106-4 (NY148)	2.5	13.7	6.3	4.5	5.8	38.3	10.3	36.6	17.3	7.0
W5015-12	2.5	25.0	4.8	5.4	5.6	58.4	9.3	10.6	13.6	0.6
Mean	2.9	23.7	5.7	5.5	5.6	41.8	9.7	23.6	16.8	5.3

Table 5 - Average tuber size (ounces) and distribution (%) for each grade category by tuber count.

		Zebra Chip	Zebra Chip
Entry #	Cultivar	Raw Chips	Fried Chips
1	Atlantic	++	+++
2	Snowden	+	++
3	CO00188-4W	-	-
4	CO00197-3W	+++	+++
5	MSL292-A	+	+
6	ND7519-1	+++	++
7	ND8305-1	+++	++
8	ND8331Cb-2	-	-
9	NY140	++	+ +
10	W2310-3	+++	++
11	W2978-3	+	-
12	W4980-1	+	+
13	MN99380-1	+++	+++
14	MSJ126-9Y	+++	++
15	MSR061-1	+	+++
16	E106-4 (NY148)	-	+++
17	W5015-12	+++	+++

Table 6. Combined results from Ratings 2 and 3 for Zebra Chip symptoms in chips.

*Rating

- none

+ mild

++ moderate

+++ severe or dark

Pennsylvania Regional Location

Patton, PA

Local Coordinator:	Cooperative Grower:	Cooperating Chip Processor:
Dr. Bill Lamont	James Hite	Snyder of Berlin
Penn State Univ.	Patton, PA 16668	Molly Baker
Department of Horticulture		Berlin, PA 15530
University Park, PA 16802	Report Preparation: B. W. Dye	
Trial Data:		

Planting Date:	24-May-11	Soil Temperature: 60°F
Vine Kill Date:	12-Sep-11	(111 growing days)
Harvest Date:	11-Oct-11	Soil Temperature: 60°F

Row and plant spacing: 34 inches between rows, 12 inches between plants; Plot length 25 feet, 4 replications.

Growing Season Weather: Most of the growing season was cool and moist with July becoming hot and very dry. A total of 24.22 inches of rain fell from May 1 through September 30, 2011. The plot was not irrigated.

	*Avg. High ⁰F	*Avg. Low °F	*Rain (inches)	*
May	71	49	3.98	6
June	79	55	2.25	V
July	87	61	1.38	
August	80	58	6.13	
September	72	55	10.48	
Total Rainfall	24.22			

*Temperatures and Rainfall as reported at Prince Gallitzin State Park / Patton, PA by Weather Warehouse®

Pennsylvania Regional Location

Patton, PA

Trial Information - continued

Trial Procedure:

- Previous crop: Wheat Soil Type: shaley loam
- Fertilizer: 13-13-13 1,250 pounds

Irrigation: Rainfall 24.22 inches

Herbicides:Before planting: Touchdown (0.75 quart/acre)Metribuzin (2/3 pound/acre), Medal (1.3 pints/acre)

- Insecticides: Baythroid (2 ounces) / Thionex (1.3 quarts) Admire (7 ounces/acre), Corgen (5 ounces/acre)
- Fungicides: Manzate® (1 pound/acre), Pennco-zeb (1 pound/acre)

Vine Kill: Reglone (1 pint)

Pennsylvania Regional Trial

	Yield (cwt/A)				Size Di	stributi	on	n Characteristics				
Entry	No. 1	Total	No. 1	Small	Mid- Size	Large	Culls	Agtron Scoreª	Specific Gravity ^a	Interna I Defect	Major External Defects	
W 5015-12	194	364	53	8	53	0	39	46	1.076	2	SB SG GC PC SR	
Snowden	301	357	84	7	84	1	8	53	1.075	2	SB SG MS SR SC	
MN 99380-1	175	353	50	8	50	0	43	48	1.070	0	SB SG GC PC SR	
MSL 292-A	251	288	87	5	87	0	8	52	1.071	1	SB MS PC SR	
CO 00197-3W	138	273	51	16	51	0	33	42	1.070	4	SB SG MS SR SC	
MSR 061-1	228	271	84	8	84	2	7	50	1.071	4	SB GC SC	
W 4980-1	217	254	85	4	85	1	10	42	1.069	0	SB MS PC SR	
NY 140	196	253	77	7	77	0	15	51	1.064	0	SB SG MS SR SC	
W 2310-3	139	251	55	5	55	0	40	49	1.084	0	SB SG MS SR SC	
ND 8305-1	92	239	38	22	38	0	39	49	1.088	1	MS ST PC SR SC	
ND 7519-1	135	214	63	11	63	0	26	49	1.072	3	SB SG GC SR SC	
CO 00188-4W	105	140	75	22	75	0	3	55	1.068	0	SB SG PC SR	
W 2978-3	97	128	76	21	76	0	3	52	1.064	0	SB SG GC SC	
Atlantic	100	125	80	12	80	0	8	55	1.086	3	SB SG MS SC	
MSJ 126-9Y	83	105	79	5	79	4	12	45	1.065	1	SB SG PC SR	
ND 8331Cb-2	45	83	55	19	55	0	27	60	1.081	0	SB SG MS SR SC	
Mean	156	231										
lsd 0.05	44.1	49.5		^a Samples processed 13-Oct-11 by						ct-11 by		
CV%	19.9	15.0						Snyder of	f Berlin		-	
External Defects:		Interna	Defec	ts: Hol	low H	eart an	d inte	rnal Brow	ning; 20 t	ubers s	ampled per entry.	
SB = SUNDURN MS - Mis-shaper	.	PC = Pr ST - St	Tessure Crack GC = Growth Cracks SG = Secondary Growth Stone Damage SC = Scab SP = Secondary Pot (Dry/Wo									
no – mis-snaper	1	51 – 50										

Table 1. Yield, Size Distribution, and Characteristics of 2011 Snack Food varieties at Chest Springs, PA.

U.S. Potato Board/Snack Food Association National Chip Trial - 2011

Wisconsin Trial Site

Mary T. LeMere, Interim Superintendent, Hancock Agricultural Research Station Phone: 715-249-5961; E-mail: lemere@wisc.edu College of Agricultural and Life Sciences, University of Wisconsin-Madison

Trial Site

Hancock Agricultural Research Station, N3909 CTH V, Hancock, WI 54943

Technical Support

Amber Gotch, Hancock Agricultural Research Station

Trial Procedure

Seed was held in a locker in the Wisconsin Potato and Vegetable Storage Research Facility at 38°F until cutting. Seed was moved to 55°F to warm two days prior to cutting. Cutting was done by hand on April 18, 2011 with special attention paid to cutting uniform-sized, blocky seed pieces ranging from 2 to 2½ oz in weight. Cut seed was placed in well-ventilated plastic crates and held at 55°F for three days to promote drying and suberization prior to planting. Planting took place on April 25, 2011 using an Iron Age assist-feed planter. Varieties were planted in single-row plots 250 ft. in length. Rows were spaced 36 in. apart. Seed pieces were placed 12 in. apart within each row. Plots were vine-killed on September 6 and 13, 2011 and harvested using a custom-built Gallenberg plot harvester on September 30, 2011.

Plots were maintained according to standard production practices recommended by the University of Wisconsin. Petiole nitrate monitoring following rain events led to an additional fertilizer application in July. Elevated disease pressure resulted in frequent fungicide applications. Irrigation schedules and application rates were based on in-hill soil moisture monitors and daily field observations.

Fertility: 0-0-60; 0-0-0-17S-21Ca, 6-30-22-4S (550lbs 4-25), 21-0-0-24S (360lbs 5-19), 34-0-0 (150lbs 7-6),

Weed Control: Parallel, Metribuzin

Insect Control: Abba, Coragen

Disease Control: Revus, Bravo ZN, Headline, Endura, Echo ZN, Dithane DF, Tanos, Super Tin 80WP

Vine Kill: Reglone

Rainfall: 17.7 in

Irrigation: 16.6 in

Soil type: Plainfield loamy sand

Yield Data and Tuber Quality

Tubers were graded and sized using a custom-built Gallenberg grader and Exeter optical sizer. Specific gravity measurements were taken for each variety using a Weltech PW-2050 Dry Matter Assessment System (weight in air/weight in water method). Specific gravity, total yield, U. S. No. 1 yield, undersize and culls are presented in Table 1. U. S. No. 1 size distribution data is presented in Table 2. Internal defects were evaluated as a percent of 20 individual tubers. Table 3 indicates percent incidence of brown center, hollow heart, internal brown spot, vascular discoloration, and stem end discoloration.

	Specific	Total Yield	U. S. I	No. 1	<1 7/8 in.	Culls
Variety	Gravity	(cwt)	(cwt)	(%)	(%)	(%)
Atlantic	1.089	530.1	494	93	2	5
CO00188-4W	1.068	383.3	338	88	10	2
CO00197-3W	1.076	436.8	390	89	8	3
MSJ126-9Y	1.075	332.9	321	96	2	2
MSL292-A	1.080	583.0	531	91	2	7
MSN99380-1	1.074	701.0	582	83	3	14
MSR061-1	1.073	439.2	426	97	3	1
ND7519-7	1.086	470.6	441	94	4	3
ND8305-1	1.083	455.9	419	92	6	2
ND8331CB-2	1.082	581.2	545	94	3	3
NY140	1.086	552.3	516	93	3	4
Snowden	1.081	591.3	567	96	1	3
W2310-3	1.085	501.7	465	93	3	5
W2978-3	1.068	482.8	450	93	4	3
W4980-1	1.074	448.7	419	93	2	4
W5015-12	1.081	180.9	148	82	14	4

Table 1. Specific gravity, Total yield, U. S. No. 1 yield, <1 7/8" and culls, 2011.

Culls = tubers not meeting U. S. No. 1 standards due to external defects.

	2-4 oz.	4-6 oz.	6-10 oz.	10-13 oz.	13-16 oz.	>16 oz.			
Atlantic	12	17	39	17	12	4			
CO00188-4W	37	34	24	5	0	0			
CO00197-3W	29	27	36	8	1	0			
MSJ126-9Y	10	31	30	10	14	5			
MSL292-A	8	22	40	19	11	1			
MSN99380-1	15	17	34	22	6	5			
MSR061-1	24	22	39	11	4	1			
ND7519-7	27	33	31	7	3	0			
ND8305-1	29	28	36	7	1	0			
ND8331CB-2	22	25	38	12	1	3			
NY140	12	15	35	22	12	5			
Snowden	11	17	37	17	13	5			
W2310-3	15	21	35	18	11	0			
W2978-3	22	28	40	9	1	0			
W4980-1	17	19	44	16	3	1			
W5015-12	62	20	15	1	2	0			

Table 2. U. S No. 1 size distribution, 2011.

U. S. No. 1 Size Distribution (% of U. S. No. 1 Yield)

 Table 3. External and internal defects, 2011.

	Exte	ernal D	efects	(%)	Internal Defects (%)			
Variety	GC	MS	SB	SC	BC	HH	IBS	VD
Atlantic	0	0	0	0	10	0	0	10
CO00188-4W	0	0	0	0	0	0	0	0
CO00197-3W	0	0	0	0	0	0	0	5
MSJ126-9Y	0	0	0	5	0	0	0	5
MSL292-A	0	0	0	0	0	0	0	10
MSN99380-1	0	0	0	5	0	0	0	15
MSR061-1	0	0	0	0	0	0	0	5
ND7519-7	0	0	0	0	5	0	0	0
ND8305-1	0	0	0	0	0	5	0	0
ND8331CB-2	0	0	0	0	0	0	5	5
NY140	0	0	0	0	0	0	0	0
Snowden	0	0	0	0	0	0	0	0
W2310-3	0	0	0	0	0	0	0	0
W2978-3	0	0	0	0	5	0	0	0
W4980-1	0	0	0	0	0	0	15	0
W5015-12	0	0	0	0	0	0	0	0

External defects: GC = growth cracks; MS = misshapen; SB = sunburned; SC = scab Internal defects: BC = brown center; HH = hollow heart; IBS = internal brown spot; VD = vascular discoloration